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ABSTRACT

Context. K-means is a clustering algorithm that has been used to classify large datasets in astronomical databases. It is an unsuper-
vised method, able to cope very different types of problems.
Aims. We check whether a variant of the algorithm called single pass k-means can be used as a fast alternative to the traditional
k-means.
Methods. The execution time of the two algorithms are compared when classifying subsets drawn from the SDSS-DR7 catalog of
galaxy spectra.
Results. Single-pass k-means turn out to be between 20% and 40% faster than k-means and provide statistically equivalent classifi-
cations. This conclusion can be scaled up to other larger databases because the execution time of both algorithms increases linearly
with the number of objects.
Conclusions. Single-pass k-means can be safely used as a fast alternative to k-means.
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1. Rationale

The volume of many existing and forthcoming astronomical
databases is simply too large to use traditional techniques
of analysis. Objects cannot be inspected individually by as-
tronomers, and decisions about whether downloading observa-
tions from a satellite or about following up interesting targets
will be taken by numerical algorithms. Two examples of obser-
vations that must be handled using automatic methods are the
datasets gathered by the satellite Gaia1 (Prusti 2012) and the
images to be provided by the Large Synoptic Survey Telescope2

(LSST, Ivezic et al. 2008). Gaia can only download a minuscule
fraction of the observed frames, and onboard software decides
what is sent back to earth. LSST will image the full southern
sky every few days, requiring that more than 30 terabytes are
processed and stored every day during ten years. Thus new auto-
mated techniques of analysis must be developed. Regardless of
the details, the methods to be chosen are bound to be central to
future astronomy.

In this context, our group has been using the algorithm
k-means as an automated tool to classify large astronomical
data sets. It has been shown to be fast and robust in differ-
ent contexts, for example, to improve the signal-to-noise ratio
by stacking similar spectra (Sánchez Almeida et al. 2009), to
identity unusual objects in large datasets of galaxies and stars

1 http://sci.esa.int/gaia/
2 http://www.lsst.org/lsst/

(Sánchez Almeida & Allende Prieto 2013; Sánchez Almeida
et al. 2013), to search for rare targets that are particularly telling
from a physical point of view (Morales-Luis et al. 2011), to
select alike targets to speed up complex modeling of spectro-
polarimetric data (Sánchez Almeida & Lites 2000), to identify
and discard noisy spectra (Sánchez Almeida et al. 2013), or
to classify large astronomical datasets (Sánchez Almeida et al.
2010; Sánchez Almeida & Allende Prieto 2013).

Many other applications can be found in the literature,
e.g., clustering analysis of stars (Simpson et al. 2012), spec-
troscopy of Hα objects in IC 1396 star-forming region (Balazs
et al. 1996), study of formation of ultracompact dwarf galax-
ies (Chattopadhyay et al. 2012), detection of anomalous objects
among periodic variable stars (Rebbapragada et al. 2009) and
description of galaxy diversification (Fraix-Burnet et al. 2012).

So far we have used the traditional version of k-means, which
requires finding cluster centers and assigning the objects to them
in a sequential way. There is another version of the algorithm
called single-pass k-means that does the finding of the clusters
and the assignation simultaneously (e.g., Bishop 2006). Because
of this unification of two steps in only one, single-pass k-means
is expected to be faster (and so more efficient) than the traditional
approach.

In this Research Note we compare the performance of the
two variants of algorithms to see whether single pass k-means
can be reliably used as a fast alternative to the traditional
k-means for astronomy applications. Both algorithms are de-
scribed in Sect. 2. The comparison is worked out in Sect. 3,
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and it is based on the SDSS-DR7 spectra database. We use this
dataset because it has been thoroughly tested with the original
k-means (Sánchez Almeida et al. 2010). Single pass k-means is
indeed faster than the original algorithm and provides statisti-
cally equivalent results, as we conclude in Sect. 4.

2. K-means and single-pass k-means

In the context of classification algorithms, objects are points in
a high-dimensional space with as many dimensions as the num-
ber of parameters used to describe the objects. (For example, the
dimension of the space is the number of wavelengths of the spec-
tra used for testing in Sect. 3.) The catalog to be classified is a
set of points in this space, and so the (Euclidean) distance be-
tween any pair of them is well defined. Points (i.e., objects) are
assumed to be clustered around a number of cluster centers. The
classification problem consists in (1) finding the number of clus-
ters; (2) finding the cluster centers; and (3) assigning each object
to one of these centers; In the standard formulation, k-means be-
gins by selecting a number k of objects at random from the full
dataset. They are assumed to be the centers of the clusters, and
then each object in the catalog is assigned to the closest clus-
ter center (i.e., that of minimum distance). Once all objects have
been classified, the cluster center is recomputed as the centroid
of the objects in the cluster. This procedure is iterated with the
new cluster centers, and it finishes when no object is reclassified
in two consecutive steps. The number of clusters k is arbitrarily
chosen, but in practice, the results are insensitive to this selection
since only a few clusters possess a significant number of mem-
bers, so that the rest can be discarded. On exiting, the algorithm
provides a number of clusters, their corresponding cluster cen-
ters, as well as the classification of all the original objects now
assigned to one of the clusters.

As a result, the standard k-mean method is divided into two
steps; the first one is the assignation step. The ith object xi is
assigned to the cluster k if the distance between xi and the kth
cluster center μk is less than the distances to all other cluster
centers,

|xi − μk | ≤ |xi − μ j| ∀ j, (1)

where the index j labels all possible cluster centers. The assig-
nation is quantified in terms of the matrix J(i, j) defined as

J(i, k) = 1,

J(i, j) = 0 for j � k. (2)

Once the n objects in the catalog have been assigned, the second
step consists of computing new cluster centers as the centroids
of all the objects in the classes, i.e.,

μk =

n∑

i=1

J(i, k)xi

Nk
, (3)

with Nk the number of objects assigned to class k,

Nk =

n∑

i=1

J(i, k). (4)

The two steps are iterated until there are negligible reassign-
ments between successiveiterations. In other words, when re-
peated until the assignation matrix J(i, j) has negligible variation
between two iterations.

The objective of the alternative single-pass k-means method
is to update the centroids on-the-fly immediately after the assig-
nation of each data vector, without having to finish assignating
all the vectors in the database. This algorithm is expected to be
faster because we do not have to wait to update the cluster cen-
troids until all data are reassigned. As in the case of k-means,
this new method begins by choosing the initial centroids ran-
domly in the database, and then assigns each data vector to the
closest centroid. Then the loop that combines Steps 1 and 2 be-
gins. Object number i is assigned to the nearest cluster centroid.
If that data element does not change its class, then the algorithm
goes to the next element i + 1. If it changes, the centroids of the
initial class and the final class are recalculated immediately after
the assignation. Assume that the ith object previously in class k
is now assigned to class m,

J(i, k)new = J(i, k)old − 1,

J(i,m)new = J(i,m)old + 1, (5)

where the superscripts old and new refer to the value before and
after the reassignment, respectively. Then the centroids of the
clusters are updated as Bishop (2006, Sect. 9.1),

μnew
k =

μold
k

(
Nnew

k + 1
)
− xi

Nnew
k

= μold
k + (μold

k − xi)/Nnew
k , (6)

μnew
m =

μold
m
(
Nnew

m − 1
)
+ xi

Nnew
m

= μold
m −

(
μold

m − xi

)
/Nnew

m , (7)

which are just renderings of Eq. (3) with the new assignation
of the ith object. After those two centroids are updated, the al-
gorithm continues with the next data vector until completion of
the catalog. As in the regular k-means, the catalog is classified
repeatedly until no further reassignment in needed.

3. Tests

We carried out two sets of tests to verify whether, on the one
hand, single-pass k-means are faster than k-means and, on the
other hand, if the classifications resulting from both methods are
equivalents. We explain these two tests and their results in the
following sections.

The tests are based on the SDSS-DR7 spectroscopic galaxy
catalog (Abazajian et al. 2009), which we choose because it has
already been classified using k-means (Sánchez Almeida et al.
2010). The resulting classes are known in quite some detail
(Ascasibar & Sánchez Almeida 2011; Sánchez Almeida et al.
2012), so we do not show and discuss them here. This selection
implies that the classification space has 1637 dimensions set by
the number of wavelengths in the spectra.

The tests have been carried out in two rather modest com-
puters: a laptop3 (hereafter laptop) and a desktop4 (hereafter
FORD). Laptop and FORD have RAM memory of 3 Gb and
4 Gb, respectively, so the datasets cannot be very large. This fact
sets the number of objects used in the tests to a range between
1000 and 20 000 galaxy spectra.

3.1. Time per classification

First of all, we measure the relative speed of k-means and single
pass k-means by classifying different subsets of galaxy spectra

3 Intel Core i5 CPU M520 240 GHz; 3.0 Gb RAM; Ubuntu 11.4.
4 AMD Athlon(tm) 64 × 2 Dual Core Processor 5600+; 4.0 Gb RAM;
Fedora 1764 bits.
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Fig. 1. Top: computer time required for FORD to classify subsets of
the SDSS-DR7 galaxy spectrum catalog. Given the number of galaxies
to be classified (in abscissa), the time when using k-means (the solid
line) is systematically longer than the time for the alternative single pass
k-means (the dashed line). The computer time increases linearly with
the number of galaxies in the catalog. Error bars code the dispersion
produced by the random initialization of the algorithms. Bottom: gain
when using single pass k-means, which saves between 20% and 40% of
the time.

from SDSS-DR7 and comparing the time needed for completion.
We choose random subsets of the full SDSS-DR7 catalog having
between 1000 and 20 000 galaxy spectra.

For each subset and each algorithm, we repeat the classifi-
cation ten times to separate systematic differences between the
algorithms from time differences due to the random initial con-
ditions. If the randomly chosen initial centroids are very similar
to the final centroids, it takes much less time for any algorithm
to converge. The time differences are quantified in terms of the
gain G,

G = 100 × tkm − tspkm

tkm
, (8)

where the symbols tkm and tspkm denote the time per classification
for k-means and single pass k-means, respectively. Since classi-
fications are repeated several times, we compute the average and
the dispersion of the gain.

The results of our test are shown in Figs. 1 and 2. The time
for classification depends strongly on the initialization, and this
leads to a large dispersion of the time per classification. For ex-
ample, for 20 000 spectra FORD’s computer time varies from 40
and 80 min (Fig. 1). On top of this significant scatter, there is
a systematic difference between the two methods, where single
pass k-means between 20% and 40% faster than k-means – the
mean gain spans from 20% to 40% independently of the size
of the dataset and the computer (see Figs. 1 and 2; bottom pan-
els). This systematic gain when using single pass k-means is the
main result of our RN, provided that the two algorithms yield
equivalent classifications. This equivalence is indeed proven in
Sect. 3.2.

The tests described above required approximately seven
CPU days to run. This limited the size of the largest subset, since
the required time increases linearly with the number of objects
in the catalog (Figs. 1 and 2). However, single pass k-means
would outperform k-mean even for other larger datasets. That
the computer time employed by the two alternative algorithms

Fig. 2. Time for the classification (top) and gain (bottom) when using
the laptop. For symbols and further details, see Fig. 1.

increases linearly with time implies that the gain should be con-
stant even for significantly larger datasets. Moreover, k-means
is a workhorse proven to converge in many very different con-
texts. The datasets we use are not special, therefore the proper-
ties inferred for them can be probably extrapolated to many other
datasets.

3.2. Equivalence of the classifications provided
by the two algorithms

K-means and single pass k-means render different classifica-
tions of a catalog even if they start from the very same initial
cluster centers. However, the two classifications are equivalent
for practical applications. With a given a dataset, k-means does
not provide a single classification but a number of them gener-
ated by the random initialization of the algorithm (see Sect. 2).
This is a well known downside of k-means, whose impact must
be evaluated in actual applications of the algorithm (see, e.g.,
Sánchez Almeida et al. 2010, Sect. 4). There is an intrinsic un-
certainty of the classification ensuing from the random initial-
ization, therefore the classes resulting from single pass k-means
and k-means are equivalent so far as they are within this uncer-
tainty. Consequently, to study whether single pass k-means is
statistically equivalent to k-means, we test that the differences
between classifications carried out using the two methods are
similar to the differences when comparing various initializations
of the same method.

To carry out this test, we choose a subset of 20 000 galaxy
spectra randomly drawn from SDSS-DR7 and then 50 differ-
ent initializations. We proceed by classifying the 20 000 spectra
using those 50 initializations and the two algorithms, so as to
obtain 100 classifications of that dataset. It took approximately
four days for FORD to complete the task. The idea is to compare
these classifications pairwise, and we do it by employing the pa-
rameter coincidence defined by Sánchez Almeida et al. (2010,
Sect. 2.1). In essence, the classes in two classifications are paired
so that they contain the most objects in common. The percentage
of objects in these equivalent classes is the coincidence, which
would be 100% if the two classifications were identical.

The 100 classifications can be paired in 5050 different
ways with some combining only k-means classifications, some
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Fig. 3. Top: histogram of coincidence for pairs of classifications, one
inferred with k-means and the other with single pass k-means. The
mean coincidence, around 70%, is characteristic of the SDSS-DR7
galaxy spectrum catalog (Sánchez Almeida et al. 2010). Bottom: same
as avobe, except that only classifications using k-means are compared.
It shows the intrinsic dispersion in possible classifications due to the
random initialization of the algorithm.

combining only single pass k-means classifications, and some
mixing them up. They can be divided into four groups:

1. 50 pairs of classifications where each member of the pair
has been treated with a different algorithm but both with the
same initialization,

2. 2450 pairs of classifications where each member has
been treated with a different algorithm and a different
initialization,

3. 1275 pairs, all of them treated with k-means but with differ-
ent initializations,

4. 1275 pairs, all of them treated with single pass k-means but
with different initializations.

The histograms with the values of coincidence for the groups # 2
and 3 are represented in Fig. 3. Both are very similar, in-
cluding their means and standard deviations (67.9 ± 9.4% and
68.3 ± 9.5%, respectively). The lower histogram compares clas-
sifications derived using k-means alone, and so it quantifies the
intrinsic scatter due to the random initialization. The upper his-
togram compares classifications from single pass k-means and
k-means, so it includes the intrinsic scatter plus the systematic
differences that k-means and single pass k-means may have.
Since the two distributions are so similar, we conclude that there
are no systematic differences, and the classifications inferred
from k-means and single pass k-means are equivalent. The dis-
tributions corresponding to groups # 1 and # 4 are not shown,
but they are very similar to those in Fig. 3, and from them it also
follows that the classes inferred from k-means and single pass
k-means are equivalent for practical applications.

The discussion above is purely qualitative. We have gone
a step further to show that the histograms of coincidence
corresponding to the four groups are statistically equivalent.
The Kolmogorov-Smirnov (KS) test allows determining the
probability that two observed distributions are drawn from the

same parent distribution (e.g., Massey 1951). Using the KS test,
the probability that the histograms in Fig. 3 represent the same
distribution is more than 99.9%. Using all possible pairs of the
histograms from the four groups, the KS conclude that the prob-
ability of being the same distribution is between 97% and 100%.
Our claim that single pass k-means and k-means provide statis-
tically equivalent classifications relies on this result.

4. Conclusions

The classification algorithm k-means has the potential to clas-
sify huge astronomical databases, such as those to be expected
with the advent of new instruments and catalogs (see Sect. 1).
We tested a variant of the original algorithm, called single pass
k-means, which unifies the two main steps of k-means (Sect. 2).
Single pass k-means turns out to be between 20 % and 40 %
faster than k-means (Sect. 3.1), and it provides statistically
equivalent classifications (Sect. 3.2).

Saving 20% to 40% of the time may not look like a lot,
however the actual gain when using single pass k-means de-
pends very much on the specific application. Keep in mind that
k-means (and so single pass k-means) is a tool with the potential
of classifying gigantic datasets by brute force. The foreseeable
applications may require long execution times and, therefore a
40% saving may actually represent days or weeks of work.

The tests were carried out using a particular catalog of
galaxy spectra with limited data volumes (up to 20 000 objects in
1637 dimensions). However, single pass k-means would outper-
form k-mean even for other larger datasets. That the computer
time employed by the two alternative algorithms increases lin-
early with time implies that the gain should be constant even for
significantly larger datasets. Moreover, k-means is a workhorse
proven to converge in many very different contexts. The datasets
we use are not special, therefore the properties inferred for them
can probably be extrapolated to many other datasets.
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