7 research outputs found

    Relationship between smoking and acute mountain sickness: a meta-analysis of observational studies

    Get PDF
    Aims. Previous epidemiological investigations of the relationship between smoking and acutemountain sickness (AMS) risk yielded inconsistent findings.Therefore, a meta-analysis of observational studies was performed to determine whether smoking is related to the development of AMS. Methods. Searches were performed on PubMed, Scopus, Embase, and Web of Science for relevant studies that were published before November 2016 reporting smoking prevalence and AMS. Two evaluators independently selected studies, extracted data, and assessed study quality.Thepooled relative risks (RRs) and 95% confidence intervals (CIs) were obtained using random-effects models. Subgroup analyses were performed according to the type of participant, altitude, and study design. Results. A total of 11 observational studies involving 7,106 participants, 2,408 of which had AMS, were eligible for inclusion in this meta-analysis. The summary RR for AMS comparing smokers to nonsmokers was 1.02 (95% CI: 0.83 to 1.26). Specific analyses for altitude, type of participant, and study design yielded similar results.There was significant heterogeneity for all studies ( = 37.43; < 0.001; 2 = 73%, 95% CI: 51% to 85%). No publication bias was observed (Egger's test: = 0.548, Begg's test: = 0.418). Conclusions.The meta-analysis indicates that no difference was found in AMS risk with regard to smoking status

    Relationship of altitude mountain sickness and smoking: a Catalan traveller's cohort study

    Get PDF
    Objectives: The aim of this study is to analyse the relationship between smoking and altitude mountain sickness in a cohort of travellers to 2500 metres above sea level (masl) or higher. Setting: Travel Health Clinic at the Hospital Universitari de Bellvitge, in Barcelona, Spain. Participants: A total of 302 adults seeking medical advice at the travel clinic, between July 2012 and August 2014, before travelling to 2500 masl or above, who agreed to participate in the study and to be contacted after the trip were included. Individuals who met the following criteria were excluded: younger than 18 years old, taking carbonic anhydrase inhibitors for chronic use, undergoing treatment with systemic corticosteroids and taking any medication that might prevent or treat altitude mountain sickness (AMS) prior to or during the trip. The majority of participants were women (n=156, 51.7%). The mean age was 37.7 years (SD 12.3). The studied cohort included 74 smokers (24.5%), 158 (52.3%) non-smokers and 70 (23.2%) ex-smokers. No statistical differences were observed between different sociodemographic characteristics, constitutional symptoms or drug use and smoking status. Outcomes: The main outcome was the development of AMS, which was defined according to the Lake Louise AMS criteria. Results: AMS, according to the Lake Louise score, was significantly lower in smokers; the value was 14.9%, 95% CI (6.8 to 23.0%) in smokers and 29.4%, 95% CI (23.5 to 35.3%) in non-smokers with an adjusted OR of 0.54, 95% CI (0.31 to 0.97) independent of gender, age and maximum altitude reached. Conclusions: These results suggest that smoking could reduce the risk of AMS in non-acclimated individuals. Further studies should be performed in larger cohorts of travellers to confirm these results. Despite the results, smoking must be strongly discouraged because it greatly increases the risk of cardiorespiratory diseases, cancer and other diseases

    Relationship of altitude mountain sickness and smoking: a Catalan traveller's cohort study

    No full text
    Objectives: The aim of this study is to analyse the relationship between smoking and altitude mountain sickness in a cohort of travellers to 2500 metres above sea level (masl) or higher. Setting: Travel Health Clinic at the Hospital Universitari de Bellvitge, in Barcelona, Spain. Participants: A total of 302 adults seeking medical advice at the travel clinic, between July 2012 and August 2014, before travelling to 2500 masl or above, who agreed to participate in the study and to be contacted after the trip were included. Individuals who met the following criteria were excluded: younger than 18 years old, taking carbonic anhydrase inhibitors for chronic use, undergoing treatment with systemic corticosteroids and taking any medication that might prevent or treat altitude mountain sickness (AMS) prior to or during the trip. The majority of participants were women (n=156, 51.7%). The mean age was 37.7 years (SD 12.3). The studied cohort included 74 smokers (24.5%), 158 (52.3%) non-smokers and 70 (23.2%) ex-smokers. No statistical differences were observed between different sociodemographic characteristics, constitutional symptoms or drug use and smoking status. Outcomes: The main outcome was the development of AMS, which was defined according to the Lake Louise AMS criteria. Results: AMS, according to the Lake Louise score, was significantly lower in smokers; the value was 14.9%, 95% CI (6.8 to 23.0%) in smokers and 29.4%, 95% CI (23.5 to 35.3%) in non-smokers with an adjusted OR of 0.54, 95% CI (0.31 to 0.97) independent of gender, age and maximum altitude reached. Conclusions: These results suggest that smoking could reduce the risk of AMS in non-acclimated individuals. Further studies should be performed in larger cohorts of travellers to confirm these results. Despite the results, smoking must be strongly discouraged because it greatly increases the risk of cardiorespiratory diseases, cancer and other diseases

    Relationship of altitude mountain sickness and smoking: a Catalan traveller's cohort study

    No full text
    Objectives: The aim of this study is to analyse the relationship between smoking and altitude mountain sickness in a cohort of travellers to 2500 metres above sea level (masl) or higher. Setting: Travel Health Clinic at the Hospital Universitari de Bellvitge, in Barcelona, Spain. Participants: A total of 302 adults seeking medical advice at the travel clinic, between July 2012 and August 2014, before travelling to 2500 masl or above, who agreed to participate in the study and to be contacted after the trip were included. Individuals who met the following criteria were excluded: younger than 18 years old, taking carbonic anhydrase inhibitors for chronic use, undergoing treatment with systemic corticosteroids and taking any medication that might prevent or treat altitude mountain sickness (AMS) prior to or during the trip. The majority of participants were women (n=156, 51.7%). The mean age was 37.7 years (SD 12.3). The studied cohort included 74 smokers (24.5%), 158 (52.3%) non-smokers and 70 (23.2%) ex-smokers. No statistical differences were observed between different sociodemographic characteristics, constitutional symptoms or drug use and smoking status. Outcomes: The main outcome was the development of AMS, which was defined according to the Lake Louise AMS criteria. Results: AMS, according to the Lake Louise score, was significantly lower in smokers; the value was 14.9%, 95% CI (6.8 to 23.0%) in smokers and 29.4%, 95% CI (23.5 to 35.3%) in non-smokers with an adjusted OR of 0.54, 95% CI (0.31 to 0.97) independent of gender, age and maximum altitude reached. Conclusions: These results suggest that smoking could reduce the risk of AMS in non-acclimated individuals. Further studies should be performed in larger cohorts of travellers to confirm these results. Despite the results, smoking must be strongly discouraged because it greatly increases the risk of cardiorespiratory diseases, cancer and other diseases

    Relationship between smoking and acute mountain sickness: a meta-analysis of observational studies

    No full text
    Aims. Previous epidemiological investigations of the relationship between smoking and acutemountain sickness (AMS) risk yielded inconsistent findings.Therefore, a meta-analysis of observational studies was performed to determine whether smoking is related to the development of AMS. Methods. Searches were performed on PubMed, Scopus, Embase, and Web of Science for relevant studies that were published before November 2016 reporting smoking prevalence and AMS. Two evaluators independently selected studies, extracted data, and assessed study quality.Thepooled relative risks (RRs) and 95% confidence intervals (CIs) were obtained using random-effects models. Subgroup analyses were performed according to the type of participant, altitude, and study design. Results. A total of 11 observational studies involving 7,106 participants, 2,408 of which had AMS, were eligible for inclusion in this meta-analysis. The summary RR for AMS comparing smokers to nonsmokers was 1.02 (95% CI: 0.83 to 1.26). Specific analyses for altitude, type of participant, and study design yielded similar results.There was significant heterogeneity for all studies ( = 37.43; < 0.001; 2 = 73%, 95% CI: 51% to 85%). No publication bias was observed (Egger's test: = 0.548, Begg's test: = 0.418). Conclusions.The meta-analysis indicates that no difference was found in AMS risk with regard to smoking status

    COVID-19 infection in adult patients with hematological malignancies : a European Hematology Association Survey (EPICOVIDEHA)

    Get PDF
    Patients with hematological malignancies (HM) are at high risk of mortality from SARS-CoV-2 disease 2019 (COVID-19). A better understanding of risk factors for adverse outcomes may improve clinical management in these patients. We therefore studied baseline characteristics of HM patients developing COVID-19 and analyzed predictors of mortality. The survey was supported by the Scientific Working Group Infection in Hematology of the European Hematology Association (EHA). Eligible for the analysis were adult patients with HM and laboratory-confirmed COVID-19 observed between March and December 2020. The study sample includes 3801 cases, represented by lymphoproliferative (mainly non-Hodgkin lymphoma n = 1084, myeloma n = 684 and chronic lymphoid leukemia n = 474) and myeloproliferative malignancies (mainly acute myeloid leukemia n = 497 and myelodysplastic syndromes n = 279). Severe/critical COVID-19 was observed in 63.8% of patients (n = 2425). Overall, 2778 (73.1%) of the patients were hospitalized, 689 (18.1%) of whom were admitted to intensive care units (ICUs). Overall, 1185 patients (31.2%) died. The primary cause of death was COVID-19 in 688 patients (58.1%), HM in 173 patients (14.6%), and a combination of both COVID-19 and progressing HM in 155 patients (13.1%). Highest mortality was observed in acute myeloid leukemia (199/497, 40%) and myelodysplastic syndromes (118/279, 42.3%). The mortality rate significantly decreased between the first COVID-19 wave (March-May 2020) and the second wave (October-December 2020) (581/1427, 40.7% vs. 439/1773, 24.8%, p value < 0.0001). In the multivariable analysis, age, active malignancy, chronic cardiac disease, liver disease, renal impairment, smoking history, and ICU stay correlated with mortality. Acute myeloid leukemia was a higher mortality risk than lymphoproliferative diseases. This survey confirms that COVID-19 patients with HM are at high risk of lethal complications. However, improved COVID-19 prevention has reduced mortality despite an increase in the number of reported cases

    COVID-19 infection in adult patients with hematological malignancies: a European Hematology Association Survey (EPICOVIDEHA)

    No full text
    Background: Patients with hematological malignancies (HM) are at high risk of mortality from SARS-CoV-2 disease 2019 (COVID-19). A better understanding of risk factors for adverse outcomes may improve clinical management in these patients. We therefore studied baseline characteristics of HM patients developing COVID-19 and analyzed predictors of mortality. Methods: The survey was supported by the Scientifc Working Group Infection in Hematology of the European Hematology Association (EHA). Eligible for the analysis were adult patients with HM and laboratory-confrmed COVID19 observed between March and December 2020. Results: The study sample includes 3801 cases, represented by lymphoproliferative (mainly non- Hodgkin lymphoma n=1084, myeloma n=684 and chronic lymphoid leukemia n=474) and myeloproliferative malignancies (mainly acute myeloid leukemia n=497 and myelodysplastic syndromes n=279). Severe/critical COVID-19 was observed in 63.8% of patients (n=2425). Overall, 2778 (73.1%) of the patients were hospitalized, 689 (18.1%) of whom were admitted to intensive care units (ICUs). Overall, 1185 patients (31.2%) died. The primary cause of death was COVID19 in 688 patients (58.1%), HM in 173 patients (14.6%), and a combination of both COVID-19 and progressing HM in 155 patients (13.1%). Highest mortality was observed in acute myeloid leukemia (199/497, 40%) and myelodysplastic syndromes (118/279, 42.3%). The mortality rate signifcantly decreased between the frst COVID-19 wave (March–May 2020) and the second wave (October–December 2020) (581/1427, 40.7% vs. 439/1773, 24.8%, p value<0.0001). In the multivariable analysis, age, active malignancy, chronic cardiac disease, liver disease, renal impairment, smoking history, and ICU stay correlated with mortality. Acute myeloid leukemia was a higher mortality risk than lymphoproliferative diseases. Conclusions: This survey confrms that COVID-19 patients with HM are at high risk of lethal complications. However, improved COVID-19 prevention has reduced mortality despite an increase in the number of reported cases
    corecore