10 research outputs found

    New spinocerebellar ataxia subtype caused by SAMD9L mutation triggering mitochondrial dysregulation (SCA49)

    Get PDF
    Spinocerebellar ataxias consist of a highly heterogeneous group of inherited movement disorders clinically characterized by progressive cerebellar ataxia variably associated with additional distinctive clinical signs. The genetic heterogeneity is evidenced by the myriad of associated genes and underlying genetic defects identified. In this study, we describe a new spinocerebellar ataxia subtype in nine members of a Spanish five-generation family from Menorca with affected individuals variably presenting with ataxia, nystagmus, dysarthria, polyneuropathy, pyramidal signs, cerebellar atrophy and distinctive cerebral demyelination. Affected individuals presented with horizontal and vertical gaze-evoked nystagmus and hyperreflexia as initial clinical signs, and a variable age of onset ranging from 12 to 60 years. Neurophysiological studies showed moderate axonal sensory polyneuropathy with altered sympathetic skin response predominantly in the lower limbs. We identified the c.1877C > T (p.Ser626Leu) pathogenic variant within the SAMD9L gene as the disease causative genetic defect with a significant log-odds score (Z(max) = 3.43; theta = 0.00; P < 3.53 x 10(-5)). We demonstrate the mitochondrial location of human SAMD9L protein, and its decreased levels in patients' fibroblasts in addition to mitochondrial perturbations. Furthermore, mutant SAMD9L in zebrafish impaired mobility and vestibular/sensory functions. This study describes a novel spinocerebellar ataxia subtype caused by SAMD9L mutation, SCA49, which triggers mitochondrial alterations pointing to a role of SAMD9L in neurological motor and sensory functions. Corral-Juan et al. describe a novel dominantly inherited spinocerebellar ataxia subtype, SCA49, caused by SAMD9L mutation characterized by polyneuropathy, distinctive cerebral demyelination with gaze-evoked nystagmus and hyperreflexia as initial clinical signs. The study demonstrates the mitochondrial location of human SAMD9L protein triggering mitochondrial and lysosomal alterations

    Diseño del proceso de producción de Cacao en polvo y manteca de cacao

    Get PDF
    Propone un diseño del proceso productivo de cacao en polvo y manteca de cacao, brindando una alternativa para dar valor agregado a las cosechas de cacao, considerando los parámetros de operación del proceso de producción, selección y dimensionamiento de los equipos, e identificando los impactos ambientales negativos para proponer un plan de medidas ambientales

    Clinical, genetic and neuropathological characterization of spinocerebellar ataxia type 37.

    No full text
    The autosomal dominant spinocerebellar ataxias (SCAs) consist of a highly heterogeneous group of rare movement disorders characterized by progressive cerebellar ataxia variably associated with ophthalmoplegia, pyramidal and extrapyramidal signs, dementia, pigmentary retinopathy, seizures, lower motor neuron signs, or peripheral neuropathy. Over 41 different SCA subtypes have been described evidencing the high clinical and genetic heterogeneity. We previously reported a novel spinocerebellar ataxia type subtype, SCA37, linked to an 11-Mb genomic region on 1p32, in a large Spanish ataxia pedigree characterized by ataxia and a pure cerebellar syndrome distinctively presenting with early-altered vertical eye movements. Here we demonstrate the segregation of an unstable intronic ATTTC pentanucleotide repeat mutation within the 1p32 5' non-coding regulatory region of the gene encoding the reelin adaptor protein DAB1, implicated in neuronal migration, as the causative genetic defect of the disease in four Spanish SCA37 families. We describe the clinical-genetic correlation and the first SCA37 neuropathological findings caused by dysregulation of cerebellar DAB1 expression. Post-mortem neuropathology of two patients with SCA37 revealed severe loss of Purkinje cells with abundant astrogliosis, empty baskets, occasional axonal spheroids, and hypertrophic fibres by phosphorylated neurofilament immunostaining in the cerebellar cortex. The remaining cerebellar Purkinje neurons showed loss of calbindin immunoreactivity, aberrant dendrite arborization, nuclear pathology including lobulation, irregularity, and hyperchromatism, and multiple ubiquitinated perisomatic granules immunostained for DAB1. A subpopulation of Purkinje cells was found ectopically mispositioned within the cerebellar cortex. No significant neuropathological alterations were identified in other brain regions in agreement with a pure cerebellar syndrome. Importantly, we found that the ATTTC repeat mutation dysregulated DAB1 expression and induced an RNA switch resulting in the upregulation of reelin-DAB1 and PI3K/AKT signalling in the SCA37 cerebellum. This study reveals the unstable ATTTC repeat mutation within the DAB1 gene as the underlying genetic cause and provides evidence of reelin-DAB1 signalling dysregulation in the spinocerebellar ataxia type 37

    New subtype of spinocerebellar ataxia with altered vertical eye movements mapping to chromosome 1p32

    No full text
    IMPORTANCE: To provide clinical and genetic diagnoses for patients' conditions, it is important to identify and characterize the different subtypes of spinocerebellar ataxia (SCA). OBJECTIVE: To clinically and genetically characterize a Spanish kindred with pure SCA presenting with altered vertical eye movements. DESIGN Family study of ambulatory patients. Electro-oculographic and genetics studies were performed in 2 referral university centers. SETTING: Primary care institutional center in Spain. PARTICIPANTS: Thirty-six participants from a large Spanish kindred were clinically examined, and 33 family members were genetically examined. Detailed clinical data were obtained from 9 affected relatives. Two ataxic siblings and 2 asymptomatic family members were examined using an enhanced clinical protocol for a follow-up period of 7 years. MAIN OUTCOMES AND MEASURES: High-density genome-wide single-nucleotide polymorphism arrays, along with microsatellite analysis, and genetic linkage studies were performed. Whole-exome sequencing was used for 2 affected relatives. For most patients, the initial symptoms included falls, dysarthria, or clumsiness followed by a complete cerebellar syndrome. For all 9 affected relatives, we observed altered vertical eye movements, as initial ocular signs for 3 of them and for the 2 asymptomatic family members, all having inherited the risk haplotype. Neuroimaging showed isolated cerebellar atrophy. RESULTS: Initial genome-wide linkage analysis revealed suggestive linkage to chromosome 1p32. Multipoint analysis and haplotype reconstruction further traced this SCA locus to a 0.66-cM interval flanked by D1S200 and D1S2742 (z(max) = 6.539; P < .0001). The causative mutation was unidentified by exome sequencing. CONCLUSIONS AND RELEVANCE: We report a new subtype of SCA presenting in patients as slow progressing ataxia with altered vertical eye movements linked to a 11-megabase interval on 1p32. The Human Genome Nomenclature Committee has assigned this subtype of ataxia the designation SCA37

    New subtype of spinocerebellar ataxia with altered vertical eye movements mapping to chromosome 1p32

    No full text
    IMPORTANCE: To provide clinical and genetic diagnoses for patients' conditions, it is important to identify and characterize the different subtypes of spinocerebellar ataxia (SCA). OBJECTIVE: To clinically and genetically characterize a Spanish kindred with pure SCA presenting with altered vertical eye movements. DESIGN Family study of ambulatory patients. Electro-oculographic and genetics studies were performed in 2 referral university centers. SETTING: Primary care institutional center in Spain. PARTICIPANTS: Thirty-six participants from a large Spanish kindred were clinically examined, and 33 family members were genetically examined. Detailed clinical data were obtained from 9 affected relatives. Two ataxic siblings and 2 asymptomatic family members were examined using an enhanced clinical protocol for a follow-up period of 7 years. MAIN OUTCOMES AND MEASURES: High-density genome-wide single-nucleotide polymorphism arrays, along with microsatellite analysis, and genetic linkage studies were performed. Whole-exome sequencing was used for 2 affected relatives. For most patients, the initial symptoms included falls, dysarthria, or clumsiness followed by a complete cerebellar syndrome. For all 9 affected relatives, we observed altered vertical eye movements, as initial ocular signs for 3 of them and for the 2 asymptomatic family members, all having inherited the risk haplotype. Neuroimaging showed isolated cerebellar atrophy. RESULTS: Initial genome-wide linkage analysis revealed suggestive linkage to chromosome 1p32. Multipoint analysis and haplotype reconstruction further traced this SCA locus to a 0.66-cM interval flanked by D1S200 and D1S2742 (z(max) = 6.539; P < .0001). The causative mutation was unidentified by exome sequencing. CONCLUSIONS AND RELEVANCE: We report a new subtype of SCA presenting in patients as slow progressing ataxia with altered vertical eye movements linked to a 11-megabase interval on 1p32. The Human Genome Nomenclature Committee has assigned this subtype of ataxia the designation SCA37

    A novel function of Ataxin-1 in the modulation of PP2A activity is dysregulated in the spinocerebellar ataxia type 1.

    No full text
    An expansion of glutamines within the human ataxin-1 protein underlies spinocerebellar ataxia type 1 (SCA1), a dominantly inherited neurodegenerative disorder characterized by ataxia and loss of cerebellar Purkinje neurons. Although the mechanisms linking the mutation to the disease remain unclear, evidence indicates that it involves a combination of both gain and loss of functions of ataxin-1. We previously showed that the mutant ataxin-1 interacts with Anp32a, a potent and selective PP2A inhibitor, suggesting a role of PP2A in SCA1. Herein, we found a new function of ataxin-1: the modulation of Pp2a activity and the regulation of its holoenzyme composition, with the polyglutamine mutation within Atxn1 altering this function in the SCA1 mouse cerebellum before disease onset. We show that ataxin-1 enhances Pp2a-bβ expression and down-regulates Anp32a levels without affecting post-translational modifications of Pp2a catalytic subunit (Pp2a-c) known to regulate Pp2a activity. In contrast, mutant Atxn1 induces a decrease in Y307-phosphorylation in Pp2a-c, known to enhance its activity, while reducing Pp2a-b expression and inhibiting Anp32a levels. qRT-PCR and chromatin immunoprecipitation analyses show that ataxin-1-mediated regulations of the Pp2a-bβ subunit, specifically bβ2, and of Anp32a occur at the transcriptional level. The Pp2a pathway alterations were confirmed by identified phosphorylation changes of the known Pp2a-substrates, Erk2 and Gsk3β. Similarly, mutant ataxin-1-expressing SH-SY5Y cells exhibit abnormal neuritic morphology, decreased levels of both PP2A-Bβ and ANP32A, and PP2A pathway alterations, all of which are ameliorated by overexpressing ANP32A. Our results point to dysregulation of this newly assigned function of ataxin-1 in SCA1 uncovering new potential targets for therapy.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore