3,691 research outputs found

    Late stage kinetics for various wicking and spreading problems

    Full text link
    The kinetics of spreading of a liquid drop in a wedge or V-shaped groove, in a network of such grooves, and on a hydrophilic strip, is re-examined. The length of a droplet of volume Omega spreading in a wedge after a time t is predicted to scale as Omega^(1/5) * t^(2/5), and the height profile is predicted to be a parabola in the distance along the wedge. If the droplet is spreading radially in a sparse network of V-shaped grooves on a surface, the radius is predicted to scale as Omega^(1/6) * t^(1/3), provided the liquid is completely contained within the grooves. A number of other results are also obtained.Comment: 5 pages, 2 figures, RevTeX

    Pb-Zn and minor U mineralization at Tyndrum, Scotland.

    Get PDF
    This mineralization occurs as veins and vein breccias in fractures associated with the Tyndrum-Glen Fyne fault. Quartz, galena and sphalerite, with minor chalcopyrite and baryte, are accompanied by small inclusions (in the galena-rich veins) of tetrahedrite, pyrargyrite, marcasite and pyrite. Uraniferous veins post-date the main Pb-Zn mineralization and contain uraninite, calcite, baryte, galena, sphalerite, chalcopyrite, argentite, chalcocite, tetrahedrite and safflorite. Fluid inclusion studies indicate a mineralizing solution with approx 20 wt.% equiv. NaCl + KCl, a Na/K ratio of 3:1 and which was boiling during mineral precipitation. The depositional sequence is discussed.-R.A.H

    Late Quaternary sea-level changes of the Persian Gulf

    Get PDF
    Late Quaternary reflooding of the Persian Gulf climaxed with the mid-Holocene highstand previously variously dated between 6 and 3.4 ka. Examination of the stratigraphic and paleoenvironmental context of a mid- Holocenewhale beaching allows us to accurately constrain the timing of the transgressive, highstand and regressive phases of the mid- to late Holocene sea-level highstand in the Persian Gulf. Mid-Holocene transgression of the Gulf surpassed today's sea level by 7100–6890 cal yr BP, attaining a highstand of N1 m above current sea level shortly after 5290–4570 cal yr BP before falling back to current levels by 1440–1170 cal yr BP. The cetacean beached into an intertidal hardground pond during the transgressive phase (5300–4960 cal yr BP) with continued transgression interring the skeleton in shallow-subtidal sediments. Subsequent relative sea-level fall produced a forced regression with consequent progradation of the coastal system. These new ages refine previously reported timings for the mid- to late Holocene sea-level highstand published for other regions. By so doing, they allow us to constrain the timing of this correlatable global eustatic event more accurately

    A 200 Year Record of Carbon-13 and Carbon-14 Variations in a Bermuda Coral

    Get PDF
    A 200 year old brain coral, captured in Bermuda in 1976 was slabbed and x-rayed. Using the annual growth bands sequential, dated samples were taken over the entire growth period of the coral and analyzed for Δ14C, δ13C and δ18O. During the past 80 years atmospheric variations in Δ14C and δ13C due to human effects, such as release of bomb C-14 and dilution of both C-14 and C-13 by fossil fuel burning, are closely tracked by the coral. Prior to 1900 divergences between the coral and tree Δ14C and δ13C can be related to world-wide changes in plant production and possibly oceanic upwelling rates

    Alginate Oligosaccharides modify hyphal infiltration of Candida albicans in an in vitro model of invasive Human Candidosis

    Get PDF
    AIMS: A novel alginate oligomer (OligoG CF-5/20) has been shown to potentiate antifungal therapy against a range of fungal pathogens. The current study assessed the effect of this oligomer on in vitro virulence factor expression and epithelial invasion by Candida species. METHODS AND RESULTS: Plate substrate assays and epithelial models were used to assess Candida albicans (CCUG 39343 and ATCC 90028) invasion, in conjunction with confocal laser scanning microscopy and histochemistry. Expression of candidal virulence factors was determined biochemically and by quantitative PCR (qPCR). Changes in surface charge of C. albicans following OligoG treatment were analysed using electrophoretic light scattering. OligoG induced marked alterations in hyphal formation in the substrate assays and reduced invasion in the epithelial model (P 0·05), qPCR demonstrated a reduction in phospholipase B (PLB2) and SAPs (SAP4 and SAP6) expression. CONCLUSION: OligoG CF-5/20 reduced in vitro virulence factor expression and invasion by C. albicans. SIGNIFICANCE AND IMPACT OF THE STUDY: These results, and the previously described potentiation of antifungal activity, define a potential therapeutic opportunity in the treatment of invasive candidal infections

    Including debris cover effects in a distributed model of glacier ablation

    Get PDF
    Distributed glacier melt models generally assume that the glacier surface consists of bare exposed ice and snow. In reality, many glaciers are wholly or partially covered in layers of debris that tend to suppress ablation rates. In this paper, an existing physically based point model for the ablation of debris-covered ice is incorporated in a distributed melt model and applied to Haut Glacier d’Arolla, Switzerland, which has three large patches of debris cover on its surface. The model is based on a 10 m resolution digital elevation model (DEM) of the area; each glacier pixel in the DEM is defined as either bare or debris-covered ice, and may be covered in snow that must be melted off before ice ablation is assumed to occur. Each debris-covered pixel is assigned a debris thickness value using probability distributions based on over 1000 manual thickness measurements. Locally observed meteorological data are used to run energy balance calculations in every pixel, using an approach suitable for snow, bare ice or debris-covered ice as appropriate. The use of the debris model significantly reduces the total ablation in the debris-covered areas, however the precise reduction is sensitive to the temperature extrapolation used in the model distribution because air near the debris surface tends to be slightly warmer than over bare ice. Overall results suggest that the debris patches, which cover 10% of the glacierized area, reduce total runoff from the glacierized part of the basin by up to 7%

    Quantum transport in ultracold atoms

    Full text link
    Ultracold atoms confined by engineered magnetic or optical potentials are ideal systems for studying phenomena otherwise difficult to realize or probe in the solid state because their atomic interaction strength, number of species, density, and geometry can be independently controlled. This review focuses on quantum transport phenomena in atomic gases that mirror and oftentimes either better elucidate or show fundamental differences with those observed in mesoscopic and nanoscopic systems. We discuss significant progress in performing transport experiments in atomic gases, contrast similarities and differences between transport in cold atoms and in condensed matter systems, and survey inspiring theoretical predictions that are difficult to verify in conventional setups. These results further demonstrate the versatility offered by atomic systems in the study of nonequilibrium phenomena and their promise for novel applications.Comment: 24 pages, 7 figures. A revie

    Is bicarbonate in Photosystem II the equivalent of the glutamate ligand to the iron atom in bacterial reaction centers?

    Get PDF
    Photosystem II of oxygen-evolving organisms exhibits a bicarbonate-reversible formate effect on electron transfer between the primary and secondary acceptor quinones, QA and QB. This effect is absent in the otherwise similar electron acceptor complex of purple bacteria, e.g. Rhodobacter sphaeroides. This distinction has led to the suggestion that the iron atom of the acceptor quinone complex in PS II might lack the fifth and sixth ligands provided in the bacterial reaction center (RC) by a glutamate residue at position 234 of the M-subunit in Rb. sphaeroides,RCs (M232 in Rps. viridis). By site-directed mutagenesis we have altered GluM234 in RCs from Rb. sphaeroides, replacing it with valine, glutamine and glycine to form mutants M234EV, M234EQ and M234EG, respectively. These mutants grew competently under phototrophic conditions and were tested for the formate-bicarbonate effect. In chromatophores there were no detectable differences between wild type (Wt) and mutant M234EV with respect to cytochrome b-561 reduction following a flash, and no effect of bicarbonate depletion (by incubation with formate). In isolated RCs, several electron transfer activities were essentially unchanged in Wt and M234EV, M234EQ and M234EG mutants, and no formate-bicarbonate effect was observed on: (a) the fast or slow phases of recovery of the oxidized primary donor (P+) in the absence of exogenous donor, i.e., the recombination of P+QA− or P+QB−, respectively; (b) the kinetics of electron transfer from QA− to QB; or (c) the flash dependent oscillations of semiquinone formation in the presence of donor to P+ (QB turnover). The absence of a formate-bicarbonate effect in these mutants suggests that GluM234 is not responsible for the absence of the formate-bicarbonate effect in Wt bacterial RCs, or at least that other factors must be taken into account. The mutant RCs were also examined for the fast primary electron transfer along the active (A-)branch of the pigment chain, leading to reduction of QA. The kinetics were resolved to reveal the reduction of the monomer bacteriochlorophyll (τ = 3.5 ps), followed by reduction of the bacteriopheophytin (τ = 0.9 ps). Both steps were essentially unaltered from the wild type. However, the rate of reduction of QA was slowed by a factor of 2 (τ = 410 ± 30 and 47 ± 30 ps for M234EQ and M234EV, respectively, compared to 220 ps in the wild type). EPR studies of the isolated RCs showed a characteristic g = 1.82 signal for the QA semiquinone coupled to the iron atom, which was indistinguishable from the wild type. It is concluded that GluM234 is not essential to the normal functioning of the acceptor quinone complex in bacterial RCs and that the role of bicarbonate in PS II is distinct from the role of this residue in bacterial RCs

    Using critical slowing down indicators to understand economic growth rate variability and secular stagnation

    Get PDF
    This paper utilizes Critical Slowing Down (CSD; instability) indicators developed by statistical physics to analyse economic growth rate variability and secular stagnation in historical GDP data. Understanding these phenomena is vital, particularly in advanced economies faced with declining growth rates. Two novel indicators - the autocorrelation (AR1) and the variance – are found particularly useful in providing insight into inter-decadal GDP variability over this period. These indicators are first applied to the Maddison-Project historical dataset, which includes almost a century of data for some 80 countries and almost two centuries of data for 9 countries. They are additionally applied to ~50 years of recent annual data for around 130 countries from the World Bank dataset as well as ~60 years of recent quarterly data for around 20 countries from the OECD dataset. Analysis reveals inter-decadal variability in growth cycles (the recession cycle), highlighting periods of large slow growth cycles and periods of small fast growth cycles. The most commonly occurring pattern is characterised by an increase in CSD from the 1900s to 1940s, a decline in CSD between the 1930s and the 1970s, then a further increase in CSD from the 1960s to 2010. This pattern is significant in ~70% of the advanced economies. CSD indicators may then provide invaluable insights into specific aspects of inter-decadal GDP variability, such as on the nature of the business cycle, secular stagnation and the implicit “restoring forces” of the economy
    corecore