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Surface permeability of porous media particles and capillary transport.

Penpark Sirimark, Alex V. Lukyanov & Tristan Pryer
School of Mathematical and Physical Sciences, University of Reading, Reading RG6 6AX, UK

We have established previously, in a lead-in study, that the spreading of liquids in particulate
porous media at low saturation levels, characteristically less than 10% of the void space, has very
distinctive features in comparison to that at higher saturation levels. In particular, we have found
that the dispersion process can be accurately described by a special class of partial differential
equations, the super-fast non-linear diffusion equation. The results of mathematical modelling have
demonstrated very good agreement with experimental observations. However, any enhancement of
the accuracy and predictive power of the model, keeping in mind practical applications, requires the
knowledge of the effective surface permeability of the constituent particles, which defines the global,
macroscopic permeability of the particulate media. In the paper, we demonstrate how this quantity
can be determined through the solution of the Laplace-Beltrami Dirichlet problem, we study this
using the well-developed surface finite element method.

I. INTRODUCTION

Liquid distributions and transport in particulate
porous media, such as sand, at low saturation levels s,
defined in our study as the ratio of the liquid volume VL
to the volume of available voids VE in a sample volume
element V , s = VL

VE
, have many distinctive features. The-

oretically, as we have shown previously, the liquid disper-
sion can be described by a special class of mathematical
models, the superfast non-linear diffusion equation [1].
Unlike in the standard porous medium equation, which
is a paradigm of research in porous media [2], in this
special case, the non-linear coefficient of diffusion D(s)
demonstrates divergent behaviour as a function of satu-
ration s, D(s) ∝ (s− s0)−3/2, where s0 is some minimal
saturation level [1].

In practical applications, the analysis of this regime
of wetting is crucial for studies of biological processes,
such as microbial activity, and spreading of persistent
(non-volatile) liquids in soil compositions and dry porous
media commonly found in arid natural environments and
industrial installations [1, 3].

If we consider liquid distributions on the grain size
length scale, one would observe that when the satura-
tion level s is reduced to (or below) the critical level
sc ≈ 10%, the liquid domain predominantly consists of
isolated liquid bridges formed at the point of particle con-
tacts [1, 4–8], see Fig. 1 for illustration. The formation
of liquid bridges is characteristic for the so-called pen-
dular regime of wetting [4–9]. In this regime, the liquid
bridges are only connected via thin films formed on the
rough particle surfaces and they serve as variable vol-
ume reservoirs, where the capillary pressure p depends
directly on the amount of the liquid in the bridge Vb

p ≈ −p0

(
R3

Vb

)1/2

. (1)

Here, p0 = 2γ
R cosφc, γ is the coefficient of the surface

tension of the liquid, φc is the contact angle made by the
free surface of the liquid bridge with the rough solid sur-
face of the constituent particles and R is an average ra-

dius of the porous medium particles [1, 4, 6]. The spread-
ing process in such conditions only occurs over the rough
surface of the elements of the particulate porous media
connecting the liquid bridges, Fig. 1.

II. MACROSCOPIC FORMULATION OF THE
SUPER-FAST DIFFUSION PROBLEM

Microscopically, the liquid creeping flow through the
surface roughness of each particle can be described by a
local Darcy-like relationship [10] between the surface flux
density q and averaged (over some area containing many
surface irregularities) pressure in the grooves ψ

−κm
µ
∇ψ = q. (2)

Here, µ is liquid viscosity and km is the local coefficient of
permeability of the rough surface, which proportional to
the average amplitude of the surface roughness δR, that
is the width of the surface layer conducting the liquid
flux, km ∝ δ2

R [10]. We note that, if the rough surface
layer is not fully saturated with the liquid, parameter δR
should be interpreted as the characteristic width of the
liquid layer within the rough surface layer. It is always
assumed that δR � R, that is the amplitude of the sur-
face roughness (or the width of the liquid layer) is always
much smaller than the particle size.

Macroscopically, that is after averaging over some vol-
ume element containing many particles of the porous
medium, the diffusion process in the slow creeping flow
conditions can be described by a non-linear super-fast
diffusion equation

∂s

∂t
= ∇ · {D(s)∇s} , t > 0, (3)

D(s) =
D0

(s− s0)3/2
, s > s0,

which directly follows from the conservation of mass prin-
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FIG. 1. Illustration of the liquid distribution in particulate
porous media (grey) with pendular rings (blue) at low satu-
ration levels.

ciple

∂(φs)

∂t
+∇ ·Q = 0. (4)

Here D0 is the effective, macroscopic coefficient of non-
linear diffusion, s0 is the minimal level of saturation,
which can be only achieved when the liquid bridges cease
to exist (s0 ≈ 0.5%, see details in [1, 7, 8]), φ is porosity

defined as φ =
VE
V

, which is further assumed to be con-

stant, and Q is the macroscopic flux density. The macro-
scopic flux density Q is defined in such a way that the to-
tal flux through the surface of a macroscopic sample vol-
ume element is given by the surface integral

∫
Q · n dS,

where n is the normal vector to the surface of the ele-
ment.

Equation (3) can be obtained from (4) using (1)-(2)
and the spatial averaging theorem formulated in [14] as-
suming that [1]:

• the rough surface area of the porous media particles
is fully saturated with the liquid;

• the liquid is incompressible;

• the local Darcy’s law (2) is observed on the rough
particle surface elements.

All three criteria are usually very well satisfied in practi-
cal applications, and we will further assume that this is
the case. The approximation of the fully saturated rough
surface layer is well fulfilled, if the characteristic pressure
amplitude |ψ| is less than the capillary pressure ampli-
tude defined on the length scale of the surface roughness
δR, which is of the order of δR ∼ 1µm in typical sands
[15], as is demonstrated in [10]. That is, |ψ| < γ

δR
, and,

for example for water (γ = 72 mN/m) at δR = 1µm,
this results in |ψ| < 7.2 × 104 Pa. Otherwise, at larger
absolute values of the (negative) capillary pressure, the
liquid volume within the surface roughness layer would

start to vary leading to variations of the effective liquid
surface layer thickness δR, though, it is not difficult to
introduce a correction [3, 11–13]. Note, in the formula-
tion (3), the effects of gravity were neglected assuming

that the capillary length lc =
√
γ/ρg0 is much larger

than the length scale associated with the gradient of the
capillary pressure, that is lc �

√
δRL0, where L0 is the

characteristic length scale of the wetting area. Here g0 is
the Earth gravity constant and ρ is the liquid density, so
that for most liquids lc ∼ 1 mm. At the same time, taking
δR ≈ 1µm and L0 ≈ 10 mm, as it was in the experiments
reported in [1], one gets

√
δRL0 ≈ 0.1 mm� lc.

The effective coefficient of diffusion D0 = fφ
K
µ com-

prises of the global permeability of the surface elements

K = km
Se

S [1]. Here, parameter fφ = p0
2φ

√
3Nc

4π
1−φ
φ , Nc is

a coordination number of the particles, that is the aver-
age number of contacts per a particle (in sands, typically,
Nc ≈ 7) and Se/S is the ratio of the effective area of en-
trances and exits of the liquid flow in a sample volume
element with surface area S, see details in [1]. Note,
that the ratio Se/S is defined in such a way, that the
microscopic flux density q averaged over the liquid vol-
ume Vl within a macroscopic sample volume element V ,
〈q〉l =

∫
Vl

q dV , if multiplied by the ratio 〈q〉l Se

S = Q,

would result in the macroscopic average flux density Q.

The global surface permeability of the particles K is
one of the main elements of the model that enables an
accurate representation of the liquid dispersion at low
saturation levels. On the other hand, this quantity is dif-
ficult to accurately estimate a priori. It is fully defined
by the particle shape and the dimension of the liquid
bridge contact area, Fig. 1. In this paper, we determine
this important parameter on the basis of a solution to
the Laplace-Beltrami problem in a representative case of
a spherical (or nearly spherical) particle, which provides,
as we will show, a reasonable approximation for the con-
stituent elements of particulate porous media, such as
sands.

III. MICROSCOPIC MODEL OF THE SURFACE
PERMEABILITY OF THE ELEMENTS.

Consider, as the simplest example, a spherical parti-
cle of radius R with a closed surface Γ, which is split
into three sub-domains Ω0, Ω1 and Ω2 with the surface
boundaries between them ∂Ω1 and ∂Ω2, as is shown in
Fig. 2. The location of the sub-domains Ω1 and Ω2 to
each other on the surface is fixed by the tilt angle α. The
sub-domains Ω1 and Ω2 correspond to the contact area
covered by the liquid in the bridges, while the surface
flow, described by (2), takes place in Ω0.

Since the rough surface area of the particles is assumed
to be fully saturated in creeping flow conditions [10], liq-
uid pressure ψ, due to incompressibility of the liquid,
should satisfy the Laplace-Beltrami equation defined on
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the surface of the sub-domain Ω0

∆Ω0ψ = 0, (5)

as it follows from (2). Here, ∆Ω0 designates the Laplace-
Beltrami operator, which is defined on the surface ele-
ment Ω0 through the surface gradient ∇Ω0

tangential to
the surface. Formally, let nΩ0

denote the unit normal to
the surface Ω0 then we define the surface gradient of ψ
as ∇Ω0

ψ := ∇ψ − (∇ψ · nΩ0
)nΩ0

and then the Laplace-
Beltrami operator is defined as ∆Ω0

ψ = ∇Ω0
· ∇Ω0

ψ.
Note, that in fact, the condition of the fully saturated

surface layer is not essential in calculation of the flows
over one particle element of the porous media. It is suffi-
cient to presume that the variation of the capillary pres-
sure on the length scale of the particle δψ is negligible,
that is δψ � γ/δR. This is usually the case in slow
creeping flow conditions in porous media, and in fact, it
is a criterion for the use of macroscopic approximation
to such flows [9]. In the case when the surface layer is
not fully saturated, parameter δR should be interpreted
as the effective thickness of the layer filled by the liquid.

At the same time, liquid pressure variation in the
bridges is negligible in slow creeping flows in compari-
son to that in Ω0. So that, one can assume that

ψ|∂Ω1
= ψ1 = const, ψ|∂Ω2

= ψ2 = const, (6)

which are the boundary conditions to the Laplace-
Beltrami Dirichlet boundary value problem. The Dirich-
let boundary value problem (5)-(6) has a unique solution,
which, if it is found, allows to calculate the total flux
through the particle element

QT = δR
κm
µ

∫
∂Ω1

∂ψ

∂n
dl = −δR

κm
µ

∫
∂Ω2

∂ψ

∂n
dl,

where n is the normal vector to the domain boundaries
∂Ω1,2 on the surface, δR is the average amplitude of the
surface roughness, that is the width of the surface layer
conducting the liquid flux and the line integral is taken
along a closed curve in Ω0, for example the boundary
∂Ω1.

If the total flux QT is determined, one can define the
global permeability coefficient of a single particle K1.
This can be done, if we assume that the particle has
a characteristic size D and so that it can be enclosed in
a volume element V = D3 with the characteristic side
surface area D2. Then, the effective flux density Q can
be represented in terms of K1 (and the total flux QT )

Q =
QT
D2

= −K1

µ

ψ2 − ψ1

D
,

if the flow is driven by the constant pressure difference
ψ2 − ψ1 applied to the sides of the volume element.

A. Surface permeability of a sphere in the case of
azimuthally symmetric domain boundaries.

Consider now a spherical particle in an azimuthally
symmetric case, when the domain boundaries ∂Ω1 and

α

Ω0

Ω1

Ω2

∂Ω1

∂Ω2

Γ

θ0

FIG. 2. Illustration of the solution domains on a spherical
particle.

∂Ω2 are oriented at the reflex angle α = π and have
a circular shape. We use a spherical coordinate system
with its origin at the particle centre and the polar an-
gle θ counted from the axis of symmetry passing through
the centre of the circular contour ∂Ω1. In this case, the
Dirichlet boundary value problem (5)-(6) admits an ana-
lytical solution, so that particle permeability can be de-
termined explicitly. Indeed, problem (5)-(6), if we as-
sume that the liquid pressure ψ is a function of θ only
and independent of the azimuthal angle, is equivalent to

1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
= 0, θ0 < θ < π − θ1, (7)

with the boundary conditions

ψ|θ=θ0 = ψ1, ψ|θ=π−θ1 = ψ2. (8)

The analytic solution to problem (7)-(8) after apply-
ing the boundary conditions can be represented in the
following form

ψ = Ψ0(ψ2 − ψ1) ln

{
sin θ

sin θ0

1 + cos θ0

1 + cos θ

}
+ ψ1, (9)

where

Ψ0 =
1

ln
{

sin θ1
sin θ0

1+cos θ0
1−cos θ1

} .
One can now calculate the total flux

QT = −K1

µ
D(ψ2 − ψ1) = −2π sin θ0δR

km
µ

∂ψ

∂θ

∣∣∣∣
θ=θ0

= −(ψ2 − ψ1)2πδRΨ0
km
µ
.

So that, taking D = 2R,

K1 = πΨ0
δR
R
km. (10)
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One can see that, if we take θ1 = θ0, the permeability
coefficient K1 is divergent at θ0 = π/2, as is expected,
when the two contours move closer to each other and, at
the same time, their radius R sin θ0 increases, that is

K1 ≈
δR
2R

πkm
(π2 − θ0)

as θ0 →
π

2
.

In the opposite limit, at θ0 = 0, when the two contours
move further away from each other and their radius de-
creases, the permeability coefficient tends to zero, that
is

K1 ≈
δR
2R

πkm
| ln θ0|

as θ0 → 0.

Parametrically, the coefficient of permeability (10) is in-
versely proportional to the particle radius R, so that
larger particles create stronger resistance to the flow. No-
ticeably, the coefficient demonstrates strong dependence
on the surface layer thickness δR, that is K1 ∝ δ3

R since
it is anticipated that km ∝ δ2

R, so that evaluation of this
parameter in applications is crucial for the accurate esti-
mates of the liquid dispersion rates.

How does the result affect the super-fast diffusion
model (3), and basically how can it be incorporated into
the main diffusion equation? If we approximate the per-
meability coefficientK byK1 obtained in the azimuthally
symmetric case at θ1 = θ0, and, using an approximate re-
lationship between the radius of curvature R sin θ0 of the
boundary contour ∂Ω1 and the pendular ring volume [6],
one can show

sin2 θ0 ≈
√
s− s0

and at θ0 � 1 or (s− s0)� 1

K ≈ 2
δR
R

πkm
| ln(s− s0)|

. (11)

As one can see from (11), the distinctive particle shape
results in logarithmic correction to the main non-linear
superfast-diffusion coefficient D(s) = D0

(s−s0)3/2
, such that

D(s) ∝ 1

| ln(s− s0)|(s− s0)3/2
.

Apparently, the correction will mitigate to some extent
the divergent nature of the dispersion at the very small
saturation levels s ≈ s0, smoothing out the characteristic
dispersion curves.

Before we proceed to a general case, this would be in-
structive to consider, in qualitative terms, how specific is
the permeability of spherical particles. We now compare
coefficient of permeability (10) with the permeability of
a cylinder of radius R sin θ0 and length 2R with the same
surface layer of thickness δR. Such an element was of-
ten used in simple estimations of permeability in porous
media [16]. It is not difficult to calculate the total flux

∂Ω2

∂Ω1

nΩ0

Ω0

FIG. 3. Illustration of the triangular tessellation of the trun-
cated spherical surface domain Ω0 with a normal vector nΩ0

at α = 5π/6 and θ0 = θ1 = π/8.
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FIG. 4. Verification of the numerical scheme in the az-
imuthally symmetric scenario. We plot the inverse mesh size
against the error measured in the energy norm [17]. We ob-
serve the rate of convergence proven in [17] verifying that,
asymptotically, the numerical approximation converges to the
exact solution.

through this element when there is a constant pressure
difference (ψ2 − ψ1) applied to its ends

QT = −(ψ2 − ψ1)
km
µ
π sin θ0δR = −2R

Kc

µ
(ψ2 − ψ1),

so that

Kc = πkm sin θ0
δR
2R
∝ (s− s0)1/4,

where Kc is the effective permeability of the cylindrical
element.

One can observe, that in contrast to the case of spheri-
cal elements, the cylindrical approximation provides com-
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pletely different correction to the non-linear coefficient of
diffusion, if we presume similar scaling sin2 θ0 ≈

√
s− s0.

Consider now a general case.

B. Surface permeability of a sphere in the case of
arbitrary oriented boundaries.

In the arbitrary case, when α 6= π, the Dirichlet bound-
ary value problem (5)-(6) does not possess known explicit
solutions, so we make use of a classical surface finite el-
ement technique introduced in [17]. See also [18] for an
in depth review of state of the art innovations and uses
pertaining to this class of method. Using this method
we are able to numerically investigate the total flux and
hence the permeability of the particle.

∂Ω1
ψ=ψ1

∂Ω2
ψ=ψ2

ψ/ψc

FIG. 5. Distribution of non-dimensional pressure ψ/ψc
(ψc = 2γ/R) on a truncated unit sphere with identical cir-
cular boundary contours at ψ1/ψc = 0.8, ψ2/ψc = 0.2,
θ1 = θ0 = π/8 and α = 5π/6. The colour bar indicates
the value of non-dimensional pressure ψ/ψc.

We begin by approximating the truncated surface ele-
ment with a piecewise linear approximation through tri-
angular elements, see Fig. 3 for an example. In this
setting, we are approximating the geometry with a poly-
gon. This inherently introduces an error through the
approximation of the geometry. It is, however, well un-
derstood appearing as a ’variational crime’ [18]. We then
discretise the Laplace-Beltrami operator over the polygon
using piecewise linear finite elements. To test our numer-
ical model we examine the azimuthally symmetric case,
where the exact solution is known and given in (9). We
then check convergence of the finite element approxima-
tion to (9). The results are shown in Fig. 4.

We make use of the numerical model generated to ex-
amine the dependency of the total flux, and hence the
permeability of the truncated spherical element as a func-
tion of the tilt angle α, that is the position of the bound-
aries on the sphere at fixed values of the capillary pressure
ψ1 and ψ2. As in the azimuthally symmetric case, with-

out much loss of generality, we consider circular bound-
aries. The size of the boundary contour, that is its radius
R sin θ0 (or R sin θ1), will be characterized by the polar
angle θ0 (or θ1) counted from the axis of symmetry of
each contour and the particle radius R.

C. Results of numerical analysis and discussion

The distribution of pressure on the spherical surface
is illustrated in Fig. 5, while the typical total flux de-
pendence on the tilt angle α is presented in Fig. 6 at
θ0 = θ1 and at fixed values of ψ1 and ψ2. The distri-
bution of pressure demonstrates relatively smooth varia-
tions in the range bounded by the prescribed boundary
values, such that, as is expected in a diffusion problem,
ψ2 ≤ ψ ≤ ψ1. The value of the total liquid flux QT
through the spherical element decreases when the tilt
angle increases and the boundary contours move further
away from each other. At the same time, one readily ob-
serves, Fig. 6, that at relatively large tilt angles, close
to the reflex angle in the azimuthal symmetrical case,
the total flux value and hence permeability of the surface
elements, is close to that predicted on the basis of the
azimuthally symmetric solution (10). This implies that
the analytical result (10) and (11) can be used in prac-
tical applications to obtain first order corrections to the
effective non-linear coefficient of dispersion in the super-
fast diffusion model. One may notice that even at small
tilt angles, when the two boundaries are located close to
each other, one can still approximate coefficient of per-
meability with the accuracy of 50 %. We have verified
numerically that in the general case the permeability co-
efficient of the particles demonstrates the same trends
with variations of parameters θ0 and θ1 as in the az-
imuthally symmetric case.

D. Arbitrary particle shapes

Even low dispersed sand samples consist of grain parti-
cles, which are only approximately spherical [15]. There-
fore, we consider arbitrary surface elements obtained by
perturbations of a sphere preserving surface smoothness.
Based on our methodology, we examine numerical solu-
tions to the Laplace-Beltrami Dirichlet boundary value
problem (5) set on such perturbed particle surfaces to
calculate the total volumetric flux, which is the measure
of the surface permeability. To separate the effects of the
particle shape from the effects of the boundary shape
on the particle surface permeability and for the sake of
comparison with the permeability of spherical particles,
we consider circular boundary contours oriented to each
other as in the azimuthally symmetric case, Fig. 7. The
size of the boundary contour, that is its radius R sin θ0

(or R sin θ1), will be characterized by the polar angle θ0

(or θ1) counted from the axis of symmetry of each con-
tour and the radius of the sphere used to obtain the per-
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FIG. 6. Non-dimensional total flux QT /Q0 as a function of
the tilt angle α at θ0 = θ1 = π/8 and fixed values of the
capillary pressure at the boundaries ψ1 = 0.8 and ψ2 = 0.2.
Here Q0 is the total flux value at α = π. The numerical
result obtained at high resolution (maximum mesh size h/R ≈
0.003) is shown by symbols and the solid line is the best fit to
the data QT /Q0 = B0 +B1 exp(−(α−α0)/∆α) at B0 = 0.98,
B1 = 1.5, α0 = 46◦ and ∆α = 30◦. The approximation error
is about the symbol size.

∂Ω2
ψ=ψ2

∂Ω1
ψ=ψ1

ψ/ψc

FIG. 7. Particle shape and distribution of non-dimensional
pressure ψ/ψc (ψc = 2γ/R) on an arbitrary truncated surface
with identical circular boundary contours at ψ1/ψc = 0.8,
ψ2/ψc = 0.2, θ1 = θ0 = π/8 and α = π. The colour bar
indicates the value of non-dimensional pressure ψ/ψc. Non-
dimensional total flux QT /Q0 ≈ 0.86, where Q0 is the total
flux value at α = π through the original truncated sphere
used to generate the arbitrary surface shape.

turbed surface element R. The first particle shape, we
have examined, is shown in Fig. 7 with the distribution
of the liquid pressure indicated by the colour map. For
the sake of comparison, we have chosen the same bound-
ary conditions as in the case of spherical shapes, that is
ψ1/ψc = 0.8 and ψ2/ψc = 0.2, with the same contour
sizes, that is θ1 = θ0 = π/8 oriented at α = π. As is

∂Ω1
ψ=ψ1

∂Ω2
ψ=ψ2

ψ/ψc

FIG. 8. Particle shape and distribution of non-dimensional
pressure ψ/ψc (ψc = 2γ/R) on the truncated surface r(θ, φ) =
R(1 + As cosmθ cosnφ) at m = n = 5 and As = 0.15 with
identical circular boundary contours at ψ1/ψc = 0.8, ψ2/ψc =
0.2, θ1 = θ0 = π/8 and α = π. The colour bar indicates
the value of non-dimensional pressure ψ/ψc. Non-dimensional
total flux QT /Q0 ≈ 0.95, where Q0 is the total flux value at
α = π through the original truncated sphere used to generate
the perturbed surface shape.
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FIG. 9. Non-dimensional total flux QT /Q0 as a function
of the shape perturbation amplitude A2

s at fixed values of
ψ1/ψc = 0.8 and ψ2/ψc = 0.2, α = π, m = n = 5 and
θ0 = θ1 = π/8. Here Q0 is the total flux value through
the unperturbed spherical element in similar conditions. The
numerical results obtained at medium resolution (maximum
mesh size h/R ≈ 0.03) are shown by symbols and the solid
line is the best fit QT /Q0 = 1 − CsA

2
s at Cs = 1.7. The

approximation error is about the symbol size.

expected, the total volumetric flux, in this case QT , is
reduced in comparison with that, Q0, through the spher-
ical particle shape QT /Q0 ≈ 0.86, since some pathways
connecting two boundary contours became much longer,
as one can see from Fig. 7. Despite, at first glance,
strong variations of the original spherical shape, the ob-
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served effect is not dramatic and is on the scale of the
change of the surface area demonstrating that the spher-
ical shape provides a good approximation in general to
obtain estimates of the surface permeability. Indeed, the
total increase of the surface area due to the perturbation
was Sa/S0 ≈ 1.2, where S0 = 4πR2 cos θ0 is the sur-
face area of the original truncated spherical particle, so
that the characteristic size of the particle calculated via
Ra = R

√
Sa/S0 ≈ 1.1R. We note though that the actual

parameter defining the particle permeability is expected
to be an effective length of the pathways connecting the
boundary contours.

In general, effective pathway length scale is not so easy
to estimate, therefore, to understand the role of this effec-
tive parameter, consider now specific systematic changes
of the original spherical shape of radius R via the trans-
formation of the form

r(θ, φ) = R (1 +As cosmθ cosnφ) (12)

where θ and φ are the polar and azimuthal angles of the
spherical coordinate system.

The obtained surface profile is demonstrated in Fig. 8
at As = 0.15 and m = n = 5. As in the previous case,
the boundary contours are circular, identical (θ1 = θ0)
and are not perturbed. The smoothness of the perturbed
surface shape was achieved via a spline approximation
at the boundary contours during the mesh generation
and further refinement of the mesh. In this procedure, a
smooth surface profile is created with two small boundary
regions, which are not exactly described by the transfor-
mation (12). In what follows, we fix parameters of the
perturbation transformation m = n = 5 and consider
only variations of the amplitude As. Variation of the to-
tal flux QT through such elements with the amplitude of
the perturbation As is shown in Fig. 9.

The characteristic arc length Lp of the perturbed shape
can be estimated by means of

Lp
(π − 2θ0)R

≈ 1 +
A2
sm

2

8

at A2
sm

2/8 � 1 and θ0 = θ1. The estimate follows from
the definition of Lp along the meridian line (φ = const)
taking into account that A2

sm
2/8 � 1 and applying av-

eraging in the azimuthal direction, that is over φ,

Lp =

∫ π−θ0

θ0

√
1 +

1

R2

(
∂r

∂θ

)2

Rdθ =

∫ π−θ0

θ0

√
1 +A2

sm
2 sin2mθ cos2 nφRdθ =

∫ π−θ0

θ0

√
1 +

A2
sm

2

4
(1− cos 2mθ)(1 + cos 2nφ)Rdθ ≈

∫ π−θ0

θ0

{
1 +

A2
sm

2

8
(1− cos 2mθ)(1 + cos 2nφ)

}
Rdθ.

That is after averaging over the azimuthal angle and
neglecting contribution of the term of the order of
sin θ0/2m� 1

Lp ≈
∫ π−θ0

θ0

{
1 +

A2
sm

2

8
(1− cos 2mθ)

}
Rdθ

and

Lp ≈ (π − 2θ0)R

{
1 +

A2
sm

2

8

}
.

Since the total volumetric flux is expected to be pro-
portional to the pressure gradient, one can anticipate
that its dependence on the effective arc length would fol-

low QT /Q0 ≈ (π−2θ0)R
Lp

≈ 1− A2
sm

2

8 . As one can see, Fig.

9, the numerically calculated total flux dependence does
follow the trend suggested by scaling of the arc length
Lp, the match though is not perfect. We found from the
best fit QT /Q0 = 1−CsA2

s, Fig. 9, that Cs = 1.7, while
the value Cs ≈ 3.1 would be expected. This implies that
the surface diffusion over uneven landscapes is a slightly
more complex phenomenon than that one would expect
from the simple scaling suggested by the effective path-
ways length. We note, in that respect, that the methodol-
ogy and the numerical treatment of the Laplace-Beltrami
problem developed are particularly indispensable, where
there is no simple way of estimating the effective param-
eter Lp, for example over strongly heterogeneous surface
profiles with large areas inaccessible to the liquid flow.

IV. CONCLUSIONS

We have demonstrated how the permeability coefficient
of constituent elements of a porous matrix can be esti-
mated on the basis of a solution to the Laplace-Beltrami
problem using, as an example, truncated spherical parti-
cles with arbitrary oriented boundaries and perturbed
spherical shapes. In the azimuthally symmetric case,
we obtained an observable analytical solution, which has
been incorporated into the macroscopic super-fast dis-
persion model to calculate a correction to the effective
non-linear coefficient of diffusion. We have shown, that
in the case of arbitrary oriented boundaries and per-
turbed spherical shapes, the analytical solutions provide
a reasonable approximation in the general case. The an-
alytical, (10) and (11), and numerical solutions are the
main results of our paper. The methodology developed in
our study can be used in practical applications involving
more sophisticated shapes of constituent elements and
their compositions. This will be the subject of future
studies.
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