99 research outputs found

    The monocyte-macrophage axis in the intestine

    Get PDF
    Macrophages are one of the most abundant leucocytes in the intestinal mucosa where they are essential for maintaining homeostasis. However, they are also implicated in the pathogenesis of disorders such as inflammatory bowel disease (IBD), offering potential targets for novel therapies. Here we discuss the function of intestinal monocytes and macrophages during homeostasis and describe how these populations and their functions change during infection and inflammation. Furthermore, we review the current evidence that the intestinal macrophage pool requires continual renewal from circulating blood monocytes, unlike most other tissue macrophages which appear to derive from primitive precursors that subsequently self-renew

    Health-related quality of life in food hypersensitive schoolchildren and their families: parents' perceptions

    Get PDF
    BACKGROUND: About 20% of schoolchildren and adolescents in Sweden suffer from perceived food hypersensitivity (e.g. allergy or intolerance). Our knowledge of how child food hypersensitivity affects parents HRQL and what aspects of the hypersensitivity condition relate to HRQL deterioration in the family is limited. Thus the aim of this study was to investigate the parent-reported HRQL in families with a schoolchild considered to be food hypersensitive. The allergy-associated parameters we operated with were number of offending food items, adverse food reactions, additional hypersensitivity, allergic diseases and additional family members with food hypersensitivity. These parameters, along with age and gender were assessed in relation to child, parent and family HRQL. METHODS: In May 2004, a postal questionnaire was distributed to parents of 220 schoolchildren with parent-reported food hypersensitivity (response rate 74%). Two questionnaires were used: CHQ-PF28 and a study-specific questionnaire including questions on allergy-associated parameters. In order to find factors that predict impact on HRQL, stepwise multiple linear regression analyses were carried out. RESULTS: An important predictor of low HRQL was allergic disease (i.e. asthma, eczema, rhino conjunctivitis) in addition to food hypersensitivity. The higher the number of allergic diseases, the lower the physical HRQL for the child, the lower the parental HRQL and the more disruption in family activities. Male gender predicted lower physical HRQL than female gender. If the child had sibling(s) with food hypersensitivity this predicted lower psychosocial HRQL for the child and lower parental HRQL. Food-induced gastro-intestinal symptoms predicted lower parental HRQL while food-induced breathing difficulties predicted higher psychosocial HRQL for the child and enhanced HRQL with regards to the family's ability to get along. CONCLUSION: The variance in the child's physical HRQL was to a considerable extent explained by the presence of allergic disease. However, food hypersensitivity by itself was associated with deterioration of child's psychosocial HRQL, regardless of additional allergic disease. The results suggest that it is rather the risk of food reactions and measures to avoid them that are associated with lower HRQL than the clinical reactivity induced by food intake. Therefore, food hypersensitivity must be considered to have a strong psychosocial impact

    Cancer Survivors’ Social Context in the Return to Work Process:Narrative Accounts of Social Support and Social Comparison Information

    Get PDF
    Purpose: Returning to work is a process that is intertwined with the social aspects of one’s life, which can influence the way in which that person manages their return to work and also determines the support available to them. This study aimed to explore cancer patients’ perceptions of the role of their social context in relation to returning to work following treatment. Methods: Twenty-three patients who had received a diagnosis of either urological, breast, gynaecological, or bowel cancer participated in semi-structured interviews examining general perceptions of cancer, work values and perceptions of the potential impact of their cancer diagnosis and treatment on work. Interviews were analysed using the iterative process of Framework Analysis. Results: Two superordinate themes emerged as influential in the return to work process: Social support as a facilitator of return to work (e.g. co-workers’ support and support outside of the workplace) and Social comparison as an appraisal of readiness to return to work (e.g. comparisons with other cancer patients, colleagues, and employees in other organisations or professions). Conclusions: Two functions of the social context of returning to work after cancer were apparent in the participants’ narrative: the importance of social support as a facilitator of returning to work and the utilisation of social comparison information in order to appraise one’s readiness to return to work. The role of social context in returning to work has largely been absent from the research literature to date. The findings of this study suggest that social support and social comparison mechanisms may have a significant impact on an individual’s successful return to the workplace

    Macrophage origin limits functional plasticity in helminth-bacterial co-infection

    Get PDF
    Rapid reprogramming of the macrophage activation phenotype is considered important in the defense against consecutive infection with diverse infectious agents. However, in the setting of persistent, chronic infection the functional importance of macrophage-intrinsic adaptation to changing environments vs. recruitment of new macrophages remains unclear. Here we show that resident peritoneal macrophages expanded by infection with the nematode Heligmosomoides polygyrus bakeri altered their activation phenotype in response to infection with Salmonella enterica ser. Typhimurium in vitro and in vivo. The nematode-expanded resident F4/80high macrophages efficiently upregulated bacterial induced effector molecules (e.g. MHC-II, NOS2) similarly to newly recruited monocyte-derived macrophages. Nonetheless, recruitment of blood monocyte-derived macrophages to Salmonella infection occurred with equal magnitude in co-infected animals and caused displacement of the nematode-expanded, tissue resident-derived macrophages from the peritoneal cavity. Global gene expression analysis revealed that although nematode-expanded resident F4/80high macrophages made an anti-bacterial response, this was muted as compared to newly recruited F4/80low macrophages. However, the F4/80high macrophages adopted unique functional characteristics that included enhanced neutrophil-stimulating chemokine production. Thus, our data provide important evidence that plastic adaptation of MΦ activation does occur in vivo, but that cellular plasticity is outweighed by functional capabilities specific to the tissue origin of the cell

    Performance of the ATLAS Electromagnetic Calorimeter End-cap Module 0

    Get PDF
    The construction and beam test results of the ATLAS electromagnetic end-cap calorimeter pre-production module 0 are presented. The stochastic term of the energy resolution is between 10% GeV^1/2 and 12.5% GeV^1/2 over the full pseudorapidity range. Position and angular resolutions are found to be in agreement with simulation. A global constant term of 0.6% is obtained in the pseudorapidity range 2.5 < eta < 3.2 (inner wheel)

    Mammalian NADH:ubiquinone oxidoreductase (Complex I) and nicotinamide nucleotide transhydrogenase (Nnt) together regulate the mitochondrial production of H2O2—Implications for their role in disease, especially cancer

    Full text link

    Eros is a novel transmembrane protein that controls the phagocyte respiratory burst and is essential for innate immunity

    Get PDF
    The phagocyte respiratory burst is crucial for innate immunity. The transfer of electrons to oxygen is mediated by a membrane-bound heterodimer, comprising gp91phox\textit{phox} and p22phox\textit{phox} subunits. Deficiency of either subunit leads to severe immunodeficiency. We describe Eros (essential for reactive oxygen species), a protein encoded by the previously undefined mouse gene bc017643\textit{bc017643}, and show that it is essential for host defense via the phagocyte NAPDH oxidase. Eros is required for expression of the NADPH oxidase components, gp91phox\textit{phox} and p22phox\textit{phox}. Consequently, Eros\textit{Eros}-deficient mice quickly succumb to infection. Eros\textit{Eros} also contributes to the formation of neutrophil extracellular traps (NETS) and impacts on the immune response to melanoma metastases. Eros\textit{Eros} is an ortholog of the plant protein Ycf4, which is necessary for expression of proteins of the photosynthetic photosystem 1 complex, itself also an NADPH oxio-reductase. We thus describe the key role of the previously uncharacterized protein Eros in host defense.D.C. Thomas was funded by a Wellcome Trust/CIMR Next Generation Fellowship, a National Institute for Health Research (NIHR) Clinical Lectureship, and a Starter Grant for Clinical Lecturers (Academy of Medical Sciences). K.G.C. Smith was funded by funded by the Medical Research Council (program grant MR/L019027) and is a Wellcome Investigator and a NIHR Senior Investigator. S. Clare and G. Dougan were funded by the Wellcome Trust (grant 098051). The Cambridge Institute for Medical Research is in receipt of a Wellcome Trust Strategic Award (079895). J.C.L is funded by a Wellcome Intermediate Clinical Fellowship 105920/2/14/2

    Expression of the Escherichia coli pntA and pntB Genes, Encoding Nicotinamide Nucleotide Transhydrogenase, in Saccharomyces cerevisiae and Its Effect on Product Formation during Anaerobic Glucose Fermentation

    No full text
    We studied the physiological effect of the interconversion between the NAD(H) and NADP(H) coenzyme systems in recombinant Saccharomyces cerevisiae expressing the membrane-bound transhydrogenase from Escherichia coli. Our objective was to determine if the membrane-bound transhydrogenase could work in reoxidation of NADH to NAD(+) in S. cerevisiae and thereby reduce glycerol formation during anaerobic fermentation. Membranes isolated from the recombinant strains exhibited reduction of 3-acetylpyridine-NAD(+) by NADPH and by NADH in the presence of NADP(+), which demonstrated that an active enzyme was present. Unlike the situation in E. coli, however, most of the transhydrogenase activity was not present in the yeast plasma membrane; rather, the enzyme appeared to remain localized in the membrane of the endoplasmic reticulum. During anaerobic glucose fermentation we observed an increase in the formation of 2-oxoglutarate, glycerol, and acetic acid in a strain expressing a high level of transhydrogenase, which indicated that increased NADPH consumption and NADH production occurred. The intracellular concentrations of NADH, NAD(+), NADPH, and NADP(+) were measured in cells expressing transhydrogenase. The reduction of the NADPH pool indicated that the transhydrogenase transferred reducing equivalents from NADPH to NAD(+)
    corecore