224 research outputs found

    Detection of C-Reactive Protein Using an ELISA Immunodot as a Proof-of-Concept for Paper Microfluidics

    Get PDF
    Medicine relies heavily on diagnostic testing. Before the end of 2019 – the beginning of 2020, the modernized world took for granted accurate and available diagnostic tests. The COVID-19 pandemic taught the world, even the wealthiest countries, how fragile human health can become when tests are lacking. The assumption of available testing and the confidence in test results has been seriously challenged. With these challenges, Point-of-Care (PoC) tests has transgressed medicine and science to include politics, finance, and humanity at its core. This Bard senior project is rooted in the science of a proof-of-concept paper-based ELISA Immunodot assay for the detection of C-reactive protein (CRP). CRP can be identified at varying blood concentrations found in humans physiology and disease. CRP testing is used for clinical diagnoses millions of times per month in the United States. The results confirm that the ELISA Immunodot can both distinguish CRP+ and CRP- standards and semi-quantitively predict the CRP concentration of the standard. The ability to relate the intensity of the CRP colorimetric output to a standard CRP concentration has potential applicability in future medical testing

    Medical 3D printing: methods to standardize terminology and report trends.

    Get PDF
    BackgroundMedical 3D printing is expanding exponentially, with tremendous potential yet to be realized in nearly all facets of medicine. Unfortunately, multiple informal subdomain-specific isolated terminological 'silos' where disparate terminology is used for similar concepts are also arising as rapidly. It is imperative to formalize the foundational terminology at this early stage to facilitate future knowledge integration, collaborative research, and appropriate reimbursement. The purpose of this work is to develop objective, literature-based consensus-building methodology for the medical 3D printing domain to support expert consensus.ResultsWe first quantitatively survey the temporal, conceptual, and geographic diversity of all existing published applications within medical 3D printing literature and establish the existence of self-isolating research clusters. We then demonstrate an automated objective methodology to aid in establishing a terminological consensus for the field based on objective analysis of the existing literature. The resultant analysis provides a rich overview of the 3D printing literature, including publication statistics and trends globally, chronologically, technologically, and within each major medical discipline. The proposed methodology is used to objectively establish the dominance of the term "3D printing" to represent a collection of technologies that produce physical models in the medical setting. We demonstrate that specific domains do not use this term in line with objective consensus and call for its universal adoption.ConclusionOur methodology can be applied to the entirety of medical 3D printing literature to obtain a complete, validated, and objective set of recommended and synonymous definitions to aid expert bodies in building ontological consensus

    The residual STL volume as a metric to evaluate accuracy and reproducibility of anatomic models for 3D printing: application in the validation of 3D-printable models of maxillofacial bone from reduced radiation dose CT images.

    Get PDF
    BackgroundThe effects of reduced radiation dose CT for the generation of maxillofacial bone STL models for 3D printing is currently unknown. Images of two full-face transplantation patients scanned with non-contrast 320-detector row CT were reconstructed at fractions of the acquisition radiation dose using noise simulation software and both filtered back-projection (FBP) and Adaptive Iterative Dose Reduction 3D (AIDR3D). The maxillofacial bone STL model segmented with thresholding from AIDR3D images at 100 % dose was considered the reference. For all other dose/reconstruction method combinations, a "residual STL volume" was calculated as the topologic subtraction of the STL model derived from that dataset from the reference and correlated to radiation dose.ResultsThe residual volume decreased with increasing radiation dose and was lower for AIDR3D compared to FBP reconstructions at all doses. As a fraction of the reference STL volume, the residual volume decreased from 2.9 % (20 % dose) to 1.4 % (50 % dose) in patient 1, and from 4.1 % to 1.9 %, respectively in patient 2 for AIDR3D reconstructions. For FBP reconstructions it decreased from 3.3 % (20 % dose) to 1.0 % (100 % dose) in patient 1, and from 5.5 % to 1.6 %, respectively in patient 2. Its morphology resembled a thin shell on the osseous surface with average thickness <0.1 mm.ConclusionThe residual volume, a topological difference metric of STL models of tissue depicted in DICOM images supports that reduction of CT dose by up to 80 % of the clinical acquisition in conjunction with iterative reconstruction yields maxillofacial bone models accurate for 3D printing

    Clinical situations for which 3D printing is considered an appropriate representation or extension of data contained in a medical imaging examination: Neurosurgical and otolaryngologic conditions

    Get PDF
    BACKGROUND: Medical three dimensional (3D) printing is performed for neurosurgical and otolaryngologic conditions, but without evidence-based guidance on clinical appropriateness. A writing group composed of the Radiological Society of North America (RSNA) Special Interest Group on 3D Printing (SIG) provides appropriateness recommendations for neurologic 3D printing conditions. METHODS: A structured literature search was conducted to identify all relevant articles using 3D printing technology associated with neurologic and otolaryngologic conditions. Each study was vetted by the authors and strength of evidence was assessed according to published guidelines. RESULTS: Evidence-based recommendations for when 3D printing is appropriate are provided for diseases of the calvaria and skull base, brain tumors and cerebrovascular disease. Recommendations are provided in accordance with strength of evidence of publications corresponding to each neurologic condition combined with expert opinion from members of the 3D printing SIG. CONCLUSIONS: This consensus guidance document, created by the members of the 3D printing SIG, provides a reference for clinical standards of 3D printing for neurologic conditions

    3D printing exposure and perception in radiology residency: Survey results of radiology chief residents

    Get PDF
    RATIONALE AND OBJECTIVES: The purpose of this study is to summarize a survey of radiology chief residents focused on 3D printing in radiology. MATERIALS AND METHODS: An online survey was distributed to chief residents in North American radiology residencies by subgroups of the Association of University Radiologists. The survey included a subset of questions focused on the clinical use of 3D printing and perceptions of the role of 3D printing and radiology. Respondents were asked to define the role of 3D printing at their institution and asked about the potential role of clinical 3D printing in radiology and radiology residencies. RESULTS: 152 individual responses from 90 programs were provided, with a 46% overall program response rate (n = 90/194 radiology residencies). Most programs had 3D printing at their institution (60%; n = 54/90 programs). Among the institutions that perform 3D printing, 33% (n = 18/54) have structured opportunities for resident contribution. Most residents (60%; n = 91/152 respondents) feel they would benefit from 3D printing exposure or educational material. 56% of residents (n = 84/151) believed clinical 3D printing should be centered in radiology departments. 22% of residents (n = 34/151) believed it would increase communication and improve relationships between radiology and surgery colleagues. A minority (5%; 7/151) believe 3D printing is too costly, time-consuming, or outside a radiologist\u27s scope of practice. CONCLUSIONS: A majority of surveyed chief residents in accredited radiology residencies believe they would benefit from exposure to 3D printing in residency. 3D printing education and integration would be a valuable addition to current radiology residency program curricula

    Saturn in hot water: viscous evolution of the Enceladus torus

    Full text link
    The detection of outgassing water vapor from Enceladus is one of the great breakthroughs of the Cassini mission. The fate of this water once ionized has been widely studied; here we investigate the effects of purely neutral-neutral interactions within the Enceladus torus. We find that, thanks in part to the polar nature of the water molecule, a cold (~180 K) neutral torus would undergo rapid viscous heating and spread to the extent of the observed hydroxyl cloud, before plasma effects become important. We investigate the physics behind the spreading of the torus, paying particular attention to the competition between heating and rotational line cooling. A steady-state torus model is constructed, and it is demonstrated that the torus will be observable in the millimeter band with the upcoming Herschel satellite. The relative strength of rotational lines could be used to distinguish between physical models for the neutral cloud.Comment: submitted to Icarus updated: references fixe

    Automated axial right ventricle to left ventricle diameter ratio computation in computed tomography pulmonary angiography

    Full text link
    Automated medical image analysis requires methods to localize anatomic structures in the presence of normal interpatient variability, pathology, and the different protocols used to acquire images for different clinical settings. Recent advances have improved object detection in the context of natural images, but they have not been adapted to the 3D context of medical images. In this paper we present a 2.5D object detector designed to locate, without any user interaction, the left and right heart ventricles in Computed Tomography Pulmonary Angiography (CTPA) images. A 2D object detector is trained to find ventricles on axial slices. Those detections are automatically clustered according to their size and position. The cluster with highest score, representing the 3D location of the ventricle, is then selected. The proposed method is validated in 403 CTPA studies obtained in patients with clinically suspected pulmonary embolism. Both ventricles are properly detected in 94.7% of the cases. The proposed method is very generic and can be easily adapted to detect other structures in medical images

    Automated Axial Right Ventricle to Left Ventricle Diameter Ratio Computation in Computed Tomography Pulmonary Angiography

    Get PDF
    Background and Purpose Right Ventricular to Left Ventricular (RV/LV) diameter ratio has been shown to be a prognostic biomarker for patients suffering from acute Pulmonary Embolism (PE). While Computed Tomography Pulmonary Angiography (CTPA) images used to confirm a clinical suspicion of PE do include information of the heart, a numerical RV/LV diameter ratio is not universally reported, likely because of lack in training, inter-reader variability in the measurements, and additional effort by the radiologist. This study designs and validates a completely automated Computer Aided Detection (CAD) system to compute the axial RV/LV diameter ratio from CTPA images so that the RV/LV diameter ratio can be a more objective metric that is consistently reported in patients for whom CTPA diagnoses PE. Materials and Methods The CAD system was designed specifically for RV/LV measurements. The system was tested in 198 consecutive CTPA patients with acute PE. Its accuracy was evaluated using reference standard RV/LV radiologist measurements and its prognostic value was established for 30-day PE-specific mortality and a composite outcome of 30-day PE-specific mortality or the need for intensive therapies. The study was Institutional Review Board (IRB) approved and HIPAA compliant. Results The CAD system analyzed correctly 92.4% (183/198) of CTPA studies. The mean difference between automated and manually computed axial RV/LV ratios was 0.03±0.22. The correlation between the RV/LV diameter ratio obtained by the CAD system and that obtained by the radiologist was high (r=0.81). Compared to the radiologist, the CAD system equally achieved high accuracy for the composite outcome, with areas under the receiver operating characteristic curves of 0.75 vs. 0.78. Similar results were found for 30-days PE-specific mortality, with areas under the curve of 0.72 vs. 0.75. Conclusions An automated CAD system for determining the CT derived RV/LV diameter ratio in patients with acute PE has high accuracy when compared to manual measurements and similar prognostic significance for two clinical outcomes.Madrid-MIT M+Vision Consortiu
    • …
    corecore