7 research outputs found

    C9orf72 expansion within astrocytes reduces metabolic flexibility in amyotrophic lateral sclerosis

    Get PDF
    It is important to understand how the disease process affects the metabolic pathways in amyotrophic lateral sclerosis and whether these pathways can be manipulated to ameliorate disease progression. To analyse the basis of the metabolic defect in amyotrophic lateral sclerosis we used a phenotypic metabolic profiling approach. Using fibroblasts and reprogrammed induced astrocytes from C9orf72 and sporadic amyotrophic lateral sclerosis cases we measured the production rate of reduced nicotinamide adenine dinucleotides (NADH) from 91 potential energy substrates simultaneously. Our screening approach identified that C9orf72 and sporadic amyotrophic lateral sclerosis induced astrocytes have distinct metabolic profiles compared to controls and displayed a loss of metabolic flexibility that was not observed in fibroblast models. This loss of metabolic flexibility, involving defects in adenosine, fructose and glycogen metabolism, as well as disruptions in the membrane transport of mitochondrial specific energy substrates, contributed to increased starvation induced toxicity in C9orf72 induced astrocytes. A reduction in glycogen metabolism was attributed to loss of glycogen phosphorylase and phosphoglucomutase at the protein level in both C9orf72 induced astrocytes and induced neurons. In addition, we found alterations in the levels of fructose metabolism enzymes and a reduction in the methylglyoxal removal enzyme GLO1 in both C9orf72 and sporadic models of disease. Our data show that metabolic flexibility is important in the CNS in times of bioenergetic stress

    Tumor-associated and microbial proteases compromise host IgG effector functions by a single cleavage proximal to the hinge

    No full text
    The successful elimination of pathogenic cells and microorganisms by the humoral immune system relies on effective interactions between host immunoglobulins and Fcγ receptors on effector cells, in addition to the complement system. Essential Ig motifs that direct those interactions reside within the conserved IgG lower hinge/CH2 interface. We noted that a group of tumor-related and microbial proteases cleaved human IgG1s in that region, and the “nick” of just one of the heavy chains profoundly inhibited IgG1 effector functions. We focused on IgG1 monoclonal antibodies (mAbs) since IgG1 is the most abundant human subclass and demonstrates robust Fc-mediated effector functions. The loss of Fc-mediated cell killing activities was correlated with diminished binding to the Fcγ family of receptors, but a similar decrease in affinity was not observed toward the FcRn receptor that maintains IgG in circulation. Endogenous human IgG cleavage products of comparable size to mAbs with the single cleavage were detected by Western blot analysis in synovial fluid from patients with rheumatoid arthritis and in breast carcinoma extracts. Their detection is problematic under physiological conditions, since there is no loss of structure, and antigen-binding capability is unaffected. These findings suggest that within the hostile proteolytic microenvironments associated with many diseases, key effector functions of host IgGs, or therapeutic Abs, may be compromised

    General Detector Capabilities For Food Safety Applications

    No full text
    corecore