4,003 research outputs found
The impact of inclusiveness on resilience in Temporary Multidisciplinary Organizations (TMO)
One of the enablers of organizational resilience is inclusiveness. Inclusiveness is the process of valuing, respecting and supporting members of an entity. Resilience in permanent organizations can be defined as the capability to respond to and prepare for disruption and thus, promote business continuity. On the other hand, resilience in Temporary Multidisciplinary Organizations (TMO) can be defined as the capability to respond to, prepare for and reduce the impact of disruptions caused by the drifting environment and complexity. A construction project can be viewed as a TMO. The time-limit and contract-focus of TMO challenges inclusiveness and hence makes its impact on resilience in TMO, unclear. Given the dynamic nature of TMOs (highly susceptible to disruptions), there is the need to identify the impact of inclusiveness, thus, the aim of this research. Using a case study approach (two case studies) and critical incident technique, it was identified that the TMO in which inclusiveness was actively promoted responded better to disruptions. This was enabled by project managers, directors and the project execution plan. The identified impact of inclusiveness in managing disruptions were; time and cost savings, innovation and quality enhancement. These findings contribute to debates on disruption management in TMOs (projects)
Epitaxial growth of visible to infra-red transparent conducting In2O3 nanodot dispersions and reversible charge storage as a Li-ion battery anode
peer-reviewedUnique bimodal distributions of single crystal epitaxially grown In2O3 nanodots on silicon are shown to have excellent IR transparency greater than 87% at IR wavelengths up to 4 mu m without sacrificing transparency in the visible region. These broadband antireflective nanodot dispersions are grown using a two-step metal deposition and oxidation by molecular beam epitaxy, and backscattered diffraction confirms a dominant (111) surface orientation. We detail the growth of a bimodal size distribution that facilitates good surface coverage (80%) while allowing a significant reduction in In2O3 refractive index. This unique dispersion offers excellent surface coverage and three-dimensional volumetric expansion compared to a thin film, and a step reduction in refractive index compared to bulk active materials or randomly porous composites, to more closely match the refractive index of an electrolyte, improving transparency. The (111) surface orientation of the nanodots, when fully ripened, allows minimum lattice mismatch strain between the In2O3 and the Si surface. This helps to circumvent potential interfacial weakening caused by volume contraction due to electrochemical reduction to lithium, or expansion during lithiation. Cycling under potentiodynamic conditions shows that the transparent anode of nanodots reversibly alloys lithium with good Coulombic efficiency, buffered by co-insertion into the silicon substrate. These properties could potentially lead to further development of similarly controlled dispersions of a range of other active materials to give transparent battery electrodes or materials capable of non-destructive in situ spectroscopic characterization during charging and discharging.ACCEPTEDpeer-reviewe
Fluorescent excimers and exciplexes of the purine base derivative 8-phenylethynyl-guanine in DNA hairpins
The ground- and excited-state electronic interactions between the nucleobase analog 8-(4′-phenylethynyl)deoxyguanosine, EG, with natural nucleobases and 7-deazaguanine, as well as between adjacent EG base analogs, have been characterized using a combination of steady-state spectroscopy and time-resolved fluorescence, absorption, and stimulated Raman spectroscopies. The properties of the nucleoside EG-H2 are only weakly perturbed upon incorporation into synthetic DNA hairpins in which thymine, cytosine or adenine are the bases flanking EG. Incorporation of the nucleoside to be adjacent to guanine or deazaguanine results in the formation of short-lived (40–80 ps) exciplexes, the charge transfer character of which increases as the oxidation potential of the donor decreases. Hairpins possessing two or three adjacent EG base analogs display exciton-coupled circular dichroism in the ground state and form long-lived fluorescent excited states upon electronic excitation. Incorporation of EG into the helical scaffold of the DNA hairpins places it adjacent to its neighboring nucleobases or a second EG, thus providing the close proximity required for the formation of exciplex or excimer intermediates upon geometric relaxation of the short-lived EG excited state. The three time-resolved spectroscopic methods employed permit both the characterization of the several intermediates and the kinetics of their formation and decay
Intramolecular Energy and Electron Transfer Within a Diazaperopyrenium-Based Cyclophane
Molecules capable of performing highly efficient energy transfer and ultrafast photo-induced electron transfer in well-defined multichromophoric structures are indispensable to the development of artificial photosynthetic systems. Herein, we report on the synthesis, characterization and photophysical properties of a rationally designed multichromophoric tetracationic cyclophane, DAPPBox^(4+), containing a diazaperopyrenium (DAPP^(2+)) unit and an extended viologen (ExBIPY^(2+)) unit, which are linked together by two p-xylylene bridges. Both ^1H NMR spectroscopy and single crystal X-ray diffraction analysis confirm the formation of an asymmetric, rigid, box-like cyclophane, DAPPBox^(4+). The solid-state superstructure of this cyclophane reveals a herringbone-type packing motif, leading to two types of π···π interactions: (i) between the ExBIPY^(2+) unit and the DAPP^(2+) unit (π···π distance of 3.7 Å) in the adjacent parallel cyclophane, as well as (ii) between the ExBIPY^(2+) unit (π···π distance of 3.2 Å) and phenylene ring in the closest orthogonal cyclophane. Moreover, the solution-phase photophysical properties of this cyclophane have been investigated by both steady-state and time-resolved absorption and emission spectroscopies. Upon photoexcitation of DAPPBox^(4+) at 330 nm, rapid and quantitative intramolecular energy transfer occurs from the ^1*ExBIPY^(2+) unit to the DAPP^(2+) unit in 0.5 ps to yield ^1*DAPP^(2+). The same excitation wavelength simultaneously populates a higher excited state of ^1*DAPP^(2+) which then undergoes ultrafast intramolecular electron transfer from ^1*DAPP^(2+) to ExBIPY^(2+) to yield the DAPP^(3+•) – ExBIPY^(+•) radical ion pair in τ = 1.5 ps. Selective excitation of DAPP^(2+) at 505 nm populates a lower excited state where electron transfer is kinetically unfavorable
Generalized Quantum Theory of Recollapsing Homogeneous Cosmologies
A sum-over-histories generalized quantum theory is developed for homogeneous
minisuperspace type A Bianchi cosmological models, focussing on the particular
example of the classically recollapsing Bianchi IX universe. The decoherence
functional for such universes is exhibited. We show how the probabilities of
decoherent sets of alternative, coarse-grained histories of these model
universes can be calculated. We consider in particular the probabilities for
classical evolution defined by a suitable coarse-graining. For a restricted
class of initial conditions and coarse grainings we exhibit the approximate
decoherence of alternative histories in which the universe behaves classically
and those in which it does not. For these situations we show that the
probability is near unity for the universe to recontract classically if it
expands classically. We also determine the relative probabilities of
quasi-classical trajectories for initial states of WKB form, recovering for
such states a precise form of the familiar heuristic "J d\Sigma" rule of
quantum cosmology, as well as a generalization of this rule to generic initial
states.Comment: 41 pages, 4 eps figures, revtex 4. Modest revisions throughout.
Physics unchanged. To appear in Phys. Rev.
A neighboring extremal solution for an optimal switched impulsive control problem
This paper presents a neighboring extremal solution for a class of optimal switched impulsive control problems with perturbations in the initial state, terminal condition and system's parameters. The sequence of mode's switching is pre-specified, and the decision variables, i.e. the switching times and parameters of the system involved, have inequality constraints. It is assumed that the active status of these constraints is unchanged with the perturbations. We derive this solution by expanding the necessary conditions for optimality to first-order and then solving the resulting multiple-point boundary-value problem by the backward sweep technique. Numerical simulations are presented to illustrate this solution method
Mathematical model of a telomerase transcriptional regulatory network developed by cell-based screening: analysis of inhibitor effects and telomerase expression mechanisms
Cancer cells depend on transcription of telomerase reverse transcriptase (TERT). Many transcription factors affect TERT, though regulation occurs in context of a broader network. Network effects on telomerase regulation have not been investigated, though deeper understanding of TERT transcription requires a systems view. However, control over individual interactions in complex networks is not easily achievable. Mathematical modelling provides an attractive approach for analysis of complex systems and some models may prove useful in systems pharmacology approaches to drug discovery. In this report, we used transfection screening to test interactions among 14 TERT regulatory transcription factors and their respective promoters in ovarian cancer cells. The results were used to generate a network model of TERT transcription and to implement a dynamic Boolean model whose steady states were analysed. Modelled effects of signal transduction inhibitors successfully predicted TERT repression by Src-family inhibitor SU6656 and lack of repression by ERK inhibitor FR180204, results confirmed by RT-QPCR analysis of endogenous TERT expression in treated cells. Modelled effects of GSK3 inhibitor 6-bromoindirubin-3′-oxime (BIO) predicted unstable TERT repression dependent on noise and expression of JUN, corresponding with observations from a previous study. MYC expression is critical in TERT activation in the model, consistent with its well known function in endogenous TERT regulation. Loss of MYC caused complete TERT suppression in our model, substantially rescued only by co-suppression of AR. Interestingly expression was easily rescued under modelled Ets-factor gain of function, as occurs in TERT promoter mutation. RNAi targeting AR, JUN, MXD1, SP3, or TP53, showed that AR suppression does rescue endogenous TERT expression following MYC knockdown in these cells and SP3 or TP53 siRNA also cause partial recovery. The model therefore successfully predicted several aspects of TERT regulation including previously unknown mechanisms. An extrapolation suggests that a dominant stimulatory system may programme TERT for transcriptional stability
Inclusive Search for Anomalous Production of High-pT Like-Sign Lepton Pairs in Proton-Antiproton Collisions at sqrt{s}=1.8 TeV
We report on a search for anomalous production of events with at least two
charged, isolated, like-sign leptons with pT > 11 GeV/c using a 107 pb^-1
sample of 1.8 TeV ppbar collisions collected by the CDF detector. We define a
signal region containing low background from Standard Model processes. To avoid
bias, we fix the final cuts before examining the event yield in the signal
region using control regions to test the Monte Carlo predictions. We observe no
events in the signal region, consistent with an expectation of
0.63^(+0.84)_(-0.07) events. We present 95% confidence level limits on new
physics processes in both a signature-based context as well as within a
representative minimal supergravity (tanbeta = 3) model.Comment: 15 pages, 4 figures. Minor textual changes, cosmetic improvements to
figures and updated and expanded reference
Measurement of the Lifetime Difference Between B_s Mass Eigenstates
We present measurements of the lifetimes and polarization amplitudes for B_s
--> J/psi phi and B_d --> J/psi K*0 decays. Lifetimes of the heavy (H) and
light (L) mass eigenstates in the B_s system are separately measured for the
first time by determining the relative contributions of amplitudes with
definite CP as a function of the decay time. Using 203 +/- 15 B_s decays, we
obtain tau_L = (1.05 +{0.16}/-{0.13} +/- 0.02) ps and tau_H = (2.07
+{0.58}/-{0.46} +/- 0.03) ps. Expressed in terms of the difference DeltaGamma_s
and average Gamma_s, of the decay rates of the two eigenstates, the results are
DeltaGamma_s/Gamma_s = (65 +{25}/-{33} +/- 1)%, and DeltaGamma_s = (0.47
+{0.19}/-{0.24} +/- 0.01) inverse ps.Comment: 8 pages, 3 figures, 2 tables; as published in Physical Review Letters
on 16 March 2005; revisions are for length and typesetting only, no changes
in results or conclusion
- …