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Abstract. This paper presents a neighboring extremal solution for a class of

optimal switched impulsive control problems with perturbations in the initial
state, terminal condition and system’s parameters. The sequence of mode’s

switching is pre-specified, and the decision variables, i.e. the switching times

and parameters of the system involved, have inequality constraints. It is as-
sumed that the active status of these constraints is unchanged with the pertur-

bations. We derive this solution by expanding the necessary conditions for op-

timality to first-order and then solving the resulting multiple-point boundary-
value problem by the backward sweep technique. Numerical simulations are

presented to illustrate this solution method.

1. Introduction. Real-world optimal control problems are often nonlinear and far
too complex to be solved analytically. Thus, numerical methods are indispensable
for solving such problems. However, solving optimal control problems numerically
is often time consuming. Furthermore, existing numerical solution methods (see, for
example, [1, 17]) only compute open-loop optimal controls, which are sensitive to
disturbances and modelling uncertainties. The neighboring extremal (NE) method
was proposed in the 1960s [2] to construct a NE control in a feedback form for
an unconstrained optimal control problem involving nonlinear dynamics. In this
method, it is assumed that a nominal optimal solution has been computed offline
and the aim is to construct an approximate optimal control online when the initial
state and terminal condition are slightly perturbed. This NE method was extended
in [15, 16, 8, 13, 14] to optimal control problems involving nonlinear continuous
dynamics subject to continuous inequality constraints. Recently, this method was
extended in [6, 5] to singular control problems, and in [3, 4] to constrained discrete-
time optimal control problems.

In this paper, we consider an optimal control problem for a class of switched im-
pulsive systems with perturbations of initial state, terminal condition and system’s
parameters. These systems are operated by switching between different subsystems
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or modes, and may exhibit instantaneous state jumps during the mode switching.
Switched impulsive systems arise in areas such as circuits [7, 12], etc. Impulsive
systems [10, 18, 19, 11, 9] are a special class of them, which have one mode. The
optimal control problem for switched impulsive systems is to choose the sequence
of the modes, the times to switch between the modes, and the parameters control-
ling the state jumps to minimize a given cost function subject to constraints. This
paper assumes that the sequence of the modes is pre-specified. With respect to a
nominal solution for the optimal switched impulsive control problem, an approxi-
mation to the NE solution is derived in this paper when the initial state, terminal
condition and system’s parameters are slightly perturbed. It is assumed that the
active status of the inequality constraints on the switching times and parameters
is unchanged with the perturbations. We derive this NE solution by expanding
the necessary conditions for optimality (NCO) to first-order and then solving the
resulting multiple-point boundary-value problem (MPBVP). The backward sweep
technique [2] is used to solve the MPBVP. Then, the design procedure of the con-
troller consists of two stages. In the offline stage, we can integrate two groups of
switched impulsive matrix differential equations along the trajectory of the nominal
solution, and compute the Jacobian matrix of the switching times and parameters
with respect to the initial state, terminal condition and system’s parameters on the
condition that a certain symmetric matrix is invertible. Then, with this Jacobian
a first-order correction to the nominal solution can be computed online when the
perturbations of the initial state, terminal condition and system’s parameters are
obtained. In this way, a closed-loop control law is constructed efficiently, which is
adaptive to the small changes of the initial state, terminal condition and system’s
parameters, if the operation is repeated like in batch processes. Since the switch-
ing times and parameters are both constrained in the problem and a MPBVP is
involved, the solving procedure is more complex than that in [2] for a two-point
boundary-value problem (TPBVP). Furthermore, this paper also considers the per-
turbation of the system’s parameters, which is not easy to deal with by the shooting
method [15, 8, 13, 14].

The rest of this paper is organized as follows. The nominal optimal control
problem for switched impulsive systems is presented in Section 2. Our main result
on the NE solution of the optimal switched impulsive control problem with respect
to small perturbations of initial state, terminal condition and system’s parameters is
presented in Section 3. After that, we present three groups of numerical simulations
in Section 4 to verify our NE solution. Finally, Section 5 concludes the paper.
Throughout this paper, ‘∗’ in a symmetric matrix denotes its symmetric term. For
a continuously differentiable function f(x, y) : Rnx × Rny → R, fx , ∂f/∂x is a

row vector, and fxy , (∂2f)/(∂x∂y) = ∂(∂f/∂y)T/∂x.

2. Optimal control problem for switched impulsive systems. Consider the
following switched impulsive system with N + 1 subsystems:

ẋ(t) = f i(x(t), γ, t), t ∈ (ti−1, ti), i = 1, . . . , N + 1, (1)

where x(t) ∈ Rn is the system’s state at time t, γ ∈ Rq is the uncertain parametric
vector of the system that can be measured or estimated, f i : Rn+q×(ti−1, ti)→ Rn,

i = 1, . . . , N + 1, are given functions, t0 , 0, tN+1 , tf > 0, and ti > 0, i =
1, . . . , N , represent the subsystems’ switching times. The subsystems are switched
in a pre-specified sequence with index i from 1 to N + 1, and these switchings are
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accompanied by instantaneous state jumps which are determined by

x(t+i ) =

{
x0, i = 0, (2a)

gi
(
x(t−i ), si, ti

)
, i = 1, . . . , N , (2b)

where x0 ∈ Rn is a given initial state, and gi : Rn+m × R+ → Rn, i = 1, . . . , N ,
are given functions governing the state jumps at t = ti with si ∈ Rm, i = 1, . . . , N ,
being the parameters controlling the jumps. In equation (2), x(t+i ) and x(t−i ),
i = 1, . . . , N , denote, respectively, the limits of x(t) from the right and left at
t = ti.

The terminal state of system (1)-(2) is constrained by

ψ (x(tf ), tf ) = 0, (3)

where tf is free and ψ : Rn × R+ → Rp is given. Let

ψ̄i
(
x(t+i ), x(t−i ), si, ti

)
, x(t+i )− gi

(
x(t−i ), si, ti

)
= 0, i = 1, . . . , N. (4)

In system (1)-(2), the terminal time tf = tN+1, the switching times ti, i =
1, . . . , N , and the parameters si, i = 1, . . . , N , are decision variables. They are to
be chosen such that the following constraints are satisfied:{

aj ≤ sji ≤ b
j , j = 1, . . . ,m, i = 1, . . . , N , (5a)

ti − ti−1 ≥ c, i = 1, . . . , N + 1, t0 = 0, tN+1 = tf , (5b)

where sji is the jth element of the vector si, a
j < bj are given lower and upper

bounds of the control parameters, and c > 0 is the given minimum duration of a
subsystem. Constraints (5a) and (5b) are linear, which belong to the following more
general nonlinear constraints{

ψ̂i
(
x(t+i ), x(t−i ), si, ti

)
≤ 0, i = 1, . . . , N , (6a)

η (t1, . . . , tN+1) ≤ 0 (6b)

respectively, where the inequalities are componentwise, and functions ψ̂i : R2n+m×
R+ → Rp̂ and η : R+ × · · · × R+ → Rw are given.

Let

σ ,
[
sT1 , . . . , s

T
N

]T
and τ , [t1, . . . , tN+1]

T
.

If the nominal value of the parameter γ is given, a nominal optimal control
problem for the switched impulsive system (1)-(2) can be formally stated as follows.

Problem (N). For the given system (1)-(2), find a control pair (σ, τ) ∈ RNm ×
RN+1 such that the cost function

J(σ, τ) , φ (x(tf ), tf ) +

N∑
i=1

φ̄i
(
x(t+i ), x(t−i ), ti

)
(7)

is minimized subject to the terminal constraint (3) and the inequality constraints
in (6). In (7), φ : Rn × R+ → R, φ̄i : R2n × R+ → R, i = 1, . . . , N , are given
functions.

Remark 1. we can easily incorporate an integral term into (7) by introducing a
dummy state variable. For example, consider the integral term

N+1∑
i=1

∫ ti

ti−1

Li (x(t), t) dt.
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It is clear that this term can be replaced by y(tf ), where y(t) satisfies the dynamics

ẏ(t) = Li (x(t), t) , t ∈ (ti−1, ti), i = 1, . . . , N + 1,

and

y(t+i ) =

{
0, i = 0,

y(t−i ), i = 1, . . . , N .

For Problem (N), we need the following assumption:

Assumption 1. f i, i = 1, . . . , N + 1, φ, ψ, and gi, φ̄i, ψ̂i, i = 1, . . . , N are
twice continuously differentiable with respect to each of their arguments, and η
is continuously differentiable with respect to its arguments. Furthermore, gi, i =
1, . . . , N , are bounded.

Define

Hi (x(t), λ(t), γ, t) , λT(t)f i (x(t), γ, t) , i = 1, . . . , N + 1,

Φ (x(tf ), ν, tf ) , φ (x(tf ), tf ) + νTψ (x(tf ), tf ) ,

Φ̄i(x(t+i ), x(t−i ), si, ν̄i, ν̂i, ti) , φ̄i
(
x(t+i ), x(t−i ), ti

)
+ ν̄Ti ψ̄

i
(
x(t+i ), x(t−i ), si, ti

)
+ ν̂Ti ψ̂

i
(
x(t+i ), x(t−i ), si, ti

)
, i = 1, . . . , N,

where λ(t) ∈ Rn is the costate, and ν ∈ Rp, ν̄i ∈ Rn, ν̂i ∈ Rp̂, i = 1, . . . , N ,
are Lagrange multipliers. Let π ∈ Rw be Lagrange multiplier corresponding to
constraint (6b).

Let (σ∗, τ∗), where σ∗ = [s∗T1 , . . . , s∗TN ]T and τ∗ = [t∗1, . . . , t
∗
N+1]T, be an extremal

solution to Problem (N) corresponding to the initial state x0, the terminal condition
(3), and the nominal value of parameter γ. Furthermore, let x∗(t) and λ∗(t) be
the corresponding state and costate, and let ν∗, ν̄∗i , ν̂∗i , i = 1, . . . , N , and π∗ be,
respectively, the Lagrange multipliers adjoining the constraints (3), (4), (6a) and
(6b). Denote the nominal value of γ by γ∗. We call this solution the nominal
solution to Problem (N), and this solution should satisfy the following NCO [2]:{

ẋ∗(t) = f i (x∗(t), γ∗, t) , t ∈ (t∗i−1, t
∗
i ), x∗(t0) = x0, (9a)

λ̇∗T(t) = −Hi
x (x∗(t), λ∗(t), γ∗, t) , t ∈ (t∗i−1, t

∗
i ), (9b)

for i = 1, . . . , N + 1; and
λ∗(t∗f ) = ΦT

x (x∗(t∗f ), ν∗, t∗f ), (10a)

0 = ψ
(
x∗(t∗f ), t∗f

)
, (10b)

0 = Φt(x
∗(t∗f ), ν∗, t∗f ) +HN+1(x∗(t∗f ), λ∗(t∗f ), γ∗, t∗f ) + π∗Tηtf ; (10c)

λ∗T(t∗+i ) = −Φ̄i
x+
i

(
x∗(t∗+i ), x∗(t∗−i ), s∗i , ν̄

∗
i , ν̂
∗
i , t
∗
i

)
, (11a)

λ∗T(t∗−i ) = Φ̄i
x−
i

(
x∗(t∗+i ), x∗(t∗−i ), s∗i , ν̄

∗
i , ν̂
∗
i , t
∗
i

)
, (11b)

0 = Φ̄isi
(
x∗(t∗+i ), x∗(t∗−i ), s∗i , ν̄

∗
i , ν̂
∗
i , t
∗
i

)
, (11c)

0 = ψ̄i
(
x∗(t∗+i ), x∗(t∗−i ), s∗i , t

∗
i

)
, (11d)

0 ≥ ψ̂i
(
x∗(t∗+i ), x∗(t∗−i ), s∗i , t

∗
i

)
, (11e)

0 = ν̂∗Ti ψ̂i
(
x∗(t∗+i ), x∗(t∗−i ), s∗i , t

∗
i

)
, ν̂∗i ≥ 0, (11f)

0 = Hi
(
x∗(t∗−i ), λ∗(t∗−i ), γ∗, t∗i

)
−Hi+1

(
x∗(t∗+i ), λ∗(t∗+i ), γ∗, t∗i

)
+Φ̄iti

(
x∗(t∗+i ), x∗(t∗−i ), s∗i , ν̄

∗
i , ν̂
∗
i , t
∗
i

)
+ π∗Tηti (11g)
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for i = 1, . . . , N , where the subscripts x+i and x−i denote, respectively, partial
derivatives with respect to x(t+i ) and x(t−i ); and{

0 ≥ η, (12a)

0 = π∗Tη, π∗ ≥ 0. (12b)

Define Ω , Φt +HN+1.

3. NE solution for the optimal switched impulsive control problem. Sup-
pose that the initial state, terminal condition and system’s parameters γ are per-
turbed by small amounts. Let δx0 ∈ Rn, dψ ∈ Rp and dγ ∈ Rq denote, respectively,
arbitrary deviations from the initial state, terminal condition and parameter γ of
Problem (N). Specifically, the initial state, terminal condition and γ become, re-
spectively,

x(0) = x0 + δx0, dψ = ψ (x(tf ), tf ) and γ = γ∗ + dγ. (13)

Let (σ, τ), where σ = [sT1 , . . . , s
T
N ]T and τ = [t1, . . . , tN+1]T, x(t), λ(t), ν, ν̄, ν̂, π

be an extremal solution to Problem (N) with the initial state, terminal condition and
system’s parameters γ perturbed according to (13). This solution has the following
first-order approximation:

z(t) ≈ z∗(t) + δz(t), (14a)

z(tf ) ≈ z∗(t∗f ) + dz(t∗f ), dz(t∗f ) = δz(t∗f ) + ż(t∗f )dtf , (14b)

z(t±i ) ≈ z∗(t∗±i ) + dz(t∗±i ), dz(t∗±i ) = δz(t∗±i ) + ż(t∗±i )dti, i = 1, . . . , N, (14c)

for z = x, λ, and{
tf ≈ t∗f + dtf , ν ≈ ν∗ + dν, π ≈ π∗ + dπ,

si ≈ s∗i + dsi, ν̄i ≈ ν̄∗i + dν̄i, ν̂i ≈ ν̂∗i + dν̂i, ti ≈ t∗i + dti, i = 1, . . . , N,
(15)

where δz(t) denotes the first-order variation of z(t) at time t, and all the variables
with a prefix ‘d’ denote the differentials. The NE problem for the perturbed system
may now be stated as follows.

Problem (NE). Given the nominal extremal control pair (σ∗, τ∗) of Problem (N)
and the nominal value γ∗ of the uncertain parameters γ, find the NE solution (σ, τ)
in the first-order approximation form (15) to Problem (N) when the initial state,
terminal condition and parameters γ are perturbed according to (13).

3.1. Linearization of the NCO. For Problem (NE), we make the following as-
sumption.

Assumption 2. The perturbations δx0, dψ and dγ are small enough such that the
active status of the inequality constraints (6) are unchanged after the perturbations.

Let ψ̃i
(
x∗(t∗+i ), x∗(t∗−i ), s∗i , t

∗
i

)
= 0 and η̃ (τ∗) = 0 denote, respectively, the active

parts of the constraints (6a) and (6b) for the nominal solution. Let ν̃∗i and π̃∗ be
the corresponding Lagrange multipliers. As in [2], forcing the first-order variation
of the NCO (9)-(12) to zero, we can derive the following four groups of equations.

1. For t ∈ (t∗i−1, t
∗
i ), i = 1, . . . , N + 1, we have

δẋ(t) = f ixδx(t) + f iγdγ, (16a)

δλ̇(t) = −Hi
xxδx(t)− f iTx δλ(t)−Hi

γxdγ, (16b)

where all the partial derivatives are evaluated along the nominal trajectory;
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2. at t = t∗f , we have

dλ(t∗f ) = Φxxdx(t∗f ) + ψT
x dν + Φtxdtf , (17a)

dψ = ψxdx(t∗f ) + ψtdtf , (17b)

0 = Ωxdx(t∗f ) + ψ̇Tdν + Ωtdtf + η̃Ttf dπ̃ + λ∗TfN+1
γ dγ, (17c)

where all the derivatives and partial derivatives are evaluated at t = t∗f along
the nominal trajectory;

3. at t = t∗i , i = 1, . . . , N , we have

dλ(t∗+i ) = − Φ̄i
x+
i x

+
i

dx(t∗+i )− Φ̄i
x−
i x

+
i

dx(t∗−i )

− Φ̄i
six

+
i

dsi − ψ̄iTx+
i

dν̄i − ψ̃iTx+
i

dν̃i − Φ̄i
tix

+
i

dti, (18a)

dλ(t∗−i ) = Φ̄i
x+
i x

−
i

dx(t∗+i ) + Φ̄i
x−
i x

−
i

dx(t∗−i )

+ Φ̄i
six

−
i

dsi + ψ̄iT
x−
i

dν̄i + ψ̃iT
x−
i

dν̃i + Φ̄i
tix

−
i

dti, (18b)

0 = Φ̄i
x+
i si

dx(t∗+i ) + Φ̄i
x−
i si

dx(t∗−i )

+ Φ̄isisidsi + ψ̄iTsi dν̄i + ψ̃iTsi dν̃i + Φ̄itisidti, (18c)

0 = ψ̄i
x+
i

dx(t∗+i ) + ψ̄i
x−
i

dx(t∗−i ) + ψ̄isidsi + ψ̄itidti, (18d)

0 = ψ̃i
x+
i

dx(t∗+i ) + ψ̃i
x−
i

dx(t∗−i ) + ψ̃isidsi + ψ̃itidti, (18e)

0 =
d

dt

(
Φ̄isi
)

dsi + ˙̄ψiTdν̄i +
˙̃
ψiTdν̃i + κidti + η̃Ttidπ̃ + εidγ, (18f)

where

κi ,
d

dt

(
Φ̄iti
)

+Hi
ti

(
x∗(t∗−i ), λ∗(t∗−i ), γ∗, t∗i

)
−Hi+1

ti

(
x∗(t∗+i ), λ∗(t∗+i ), γ∗, t∗i

)
,

εi , λ∗T(t∗−i )f iγ
(
x∗(t∗−i ), γ∗, t∗i

)
− λ∗T(t∗+i )f i+1

γ

(
x∗(t∗+i ), γ∗, t∗i

)
,

and all the partial derivatives are evaluated at t = t∗i along the nominal
extremal trajectory; and

4.
N∑
i=1

η̃tidti + η̃tN+1
dtf = 0. (19)

Equation (18f) is obtained by considering

Hi
x

(
x(t∗−i ), λ(t∗−i ), γ∗, t∗i

)
dx(t∗−i )+Hi

λ

(
x(t∗−i ), λ(t∗−i ), γ∗, t∗i

)
dλ(t∗−i )

= − λ̇∗T(t∗−i )dx(t∗−i ) + ẋ∗T(t∗−i )dλ(t∗−i )

and

Hi+1
x

(
x(t∗+i ), λ(t∗+i ), γ∗, t∗i

)
dx(t∗+i )+Hi+1

λ

(
x(t∗+i ), λ(t∗+i ), γ∗, t∗i

)
dλ(t∗+i )

= − λ̇∗T(t∗+i )dx(t∗+i ) + ẋ∗T(t∗+i )dλ(t∗+i ),

and equations (18a), (18b), (11a) and (11b).
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Rearranging (16a) and (16b), we have, for t ∈ (t∗i−1, t
∗
i ), i = 1, . . . , N + 1,[

δẋ(t)

δλ̇(t)

]
=

[
f ix 0
−Hi

xx −f iTx

] [
δx(t)
δλ(t)

]
+

[
f iγ
−Hi

γx

]
dγ

=

[
Ai 0
Ci −AiT

] [
δx(t)
δλ(t)

]
+

[
Ei

F i

]
dγ (20)

where Ai, Ci, Ei and F i are evaluated along the nominal extremal solution.

3.2. NE solution. Equations (16)-(19) form a linear MPBVP, which can be solved
by the backward sweep technique [2]. First, define along the nominal solution

Θi ,

{[
dνT dtf

]T
, if i = N + 1,[

dνT dtf dsTN dν̃TN dtN · · · dsTi dν̃Ti dti
]T
, if i = N, . . . , 1,

(21)

Ψi ,

{[
dψT −η̃Ttf dπ̃

]T
, if i = N + 1,[

dψT −η̃Ttf dπ̃ 0 0 −η̃TtN dπ̃ · · · 0 0 −η̃Ttidπ̃
]T
, if i = N, . . . , 1.

(22)

Next, consider two groups of auxiliary systems governed by switched impulsive
differential equations:

Ṡ1,1(t) = −S1,1(t)Ai −AiTS1,1(t) + Ci, t ∈ (t∗i−1, t
∗
i ), i = N + 1, . . . , 1,

S1,1(t∗−i ) = Φxx, i = N + 1,
S1,1(t∗−i ) = ψ̄iT

x−
i

S1,1(t∗+i )ψ̄i
x−
i

+ Φ̄i
x−
i x

−
i

, i = N, . . . , 1,

(23a)
Ṡ1,2(t) = −AiTS1,2(t), t ∈ (t∗i−1, t

∗
i ), i = N + 1, . . . , 1,

S1,2(t∗−i ) = ψT
x , i = N + 1,

S1,2(t∗−i ) = −ψ̄iT
x−
i

S1,2(t∗+i ), i = N, . . . , 1,
(23b)


Ṡ1,3(t) = −AiTS1,3(t), t ∈ (t∗i−1, t

∗
i ), i = N + 1, . . . , 1,

S1,3(t∗−i ) = ΩT
x , i = N + 1,

S1,3(t∗−i ) = −ψ̄iT
x−
i

S1,3(t∗+i ), i = N, . . . , 1,
(23c)


Ṡ1,3j+1(t) = −AiTS1,3j+1(t), t ∈ (t∗i−1, t

∗
i ), i = N − j + 1, . . . , 1,

S1,3j+1(t∗−i ) = ψ̄iT
x−
i

S1,1(t∗+i )ψ̄isi + Φ̄i
six

−
i

, i = N − j + 1,

S1,3j+1(t∗−i ) = −ψ̄iT
x−
i

S1,3j+1(t∗+i ), i = N − j, . . . , 1,
(23d)


Ṡ1,3j+2(t) = −AiTS1,3j+2(t), t ∈ (t∗i−1, t

∗
i ), i = N − j + 1, . . . , 1,

S1,3j+2(t∗−i ) = ψ̃iT
x−
i

−
(
ψ̃i
x+
i

ψ̄i
x−
i

)T
, i = N − j + 1,

S1,3j+2(t∗−i ) = −ψ̄iT
x−
i

S1,3j+2(t∗+i ), i = N − j, . . . , 1,
(23e)


Ṡ1,3j+3(t) = −AiTS1,3j+3(t), t ∈ (t∗i−1, t

∗
i ), i = N − j + 1, . . . , 1,

S1,3j+3(t∗−i ) = ψ̄iT
x−
i

S1,1(t∗+i ) ˙̄ψi, i = N − j + 1,

S1,3j+3(t∗−i ) = −ψ̄iT
x−
i

S1,3j+3(t∗+i ), i = N − j, . . . , 1,
(23f)

and
Ṙ1(t) = −S1,1(t)Ei −AiTR1(t) + F i, t ∈ (t∗i−1, t

∗
i ), i = N + 1, . . . , 1,

R1(t∗−i ) = 0, i = N + 1,
R1(t∗−i ) = −ψ̄iT

x−
i

R1(t∗+i ), i = N, . . . , 1,

(24a)
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1,2(t)Ei, t ∈ (t∗i−1, t

∗
i ), i = N + 1, . . . , 1,

R2(t∗−i ) = 0, i = N + 1,
R2(t∗−i ) = R2(t∗+i ), i = N, . . . , 1,

(24b)

 Ṙ3(t) = −ST
1,3(t)Ei, t ∈ (t∗i−1, t

∗
i ), i = N + 1, . . . , 1,

R3(t∗−i ) = λ∗T(t∗i )f
i
γ , i = N + 1,

R3(t∗−i ) = R3(t∗+i ), i = N, . . . , 1,

(24c)

 Ṙ3j+1(t) = −ST
1,3j+1(t)Ei, t ∈ (t∗i−1, t

∗
i ), i = N − j + 1, . . . , 1,

R3j+1(t∗−i ) = −ψ̄iTsi R1(t∗+i ), i = N − j + 1,
R3j+1(t∗−i ) = R3j+1(t∗+i ), i = N − j, . . . , 1,

(24d)

 Ṙ3j+2(t) = −ST
1,3j+2(t)Ei, t ∈ (t∗i−1, t

∗
i ), i = N − j + 1, . . . , 1,

R3j+2(t∗−i ) = 0, i = N − j + 1,
R3j+2(t∗−i ) = R3j+2(t∗+i ), i = N − j, . . . , 1,

(24e)


Ṙ3j+3(t) = −ST

1,3j+3(t)Ei, t ∈ (t∗i−1, t
∗
i ), i = N − j + 1, . . . , 1,

R3j+3(t∗−i ) = − ˙̄ψiTR1(t∗+i ) + εi, i = N − j + 1,
R3j+3(t∗−i ) = R3j+3(t∗+i ), i = N − j, . . . , 1,

(24f)

where j = 1, . . . , N , and all the coefficient matrices are evaluated along the nominal
solution. Let Υ be a symmetric matrix, which has the definition

Υ ,

[
Υ1,1 Υ1,2

ΥT
1,2 0

]
, (25)

where

Υ1,1 ,

 S2,2(0) . . . S2,3N+3(0)

∗
. . .

...
∗ ∗ S3N+3,3N+3(0)

 ,
ΥT

1,2 ,
[

0 η̃tf 0 0 η̃tN . . . 0 0 η̃t1
]
,

and Sα,β(0), α = 2, . . . , 3N + 3, β = α, . . . , 3N + 3, are defined along the nominal
solution by

S2,2(0) = 0, S2,3(0) = ψ̇, S3,3(0) = Ω̇,
S2,3j+1(0) = −ST

1,2(t∗+N−j+1)ψ̄N−j+1
sN−j+1

, S2,3j+2(0) = 0,

S2,3j+3(0) = −ST
1,2(t∗+N−j+1) ˙̄ψN−j+1,

S3,3j+1(0) = −ST
1,3(t∗+N−j+1)ψ̄N−j+1

sN−j+1
, S3,3j+2(0) = 0,

S3,3j+3(0) = −ST
1,3(t∗+N−j+1) ˙̄ψN−j+1,

S3j+1,3j+1(0) =
(
ψ̄N−j+1
sN−j+1

)T
S1,1(t∗+N−j+1)ψ̄N−j+1

sN−j+1
+ Φ̄N−j+1

sN−j+1sN−j+1
,

S3j+1,3j+2(0) =
(
ψ̃N−j+1
sN−j+1

)T
−
(
ψ̃N−j+1

x+
N−j+1

ψ̄N−j+1
sN−j+1

)T

,

S3j+1,3j+3(0) = d
dt

(
Φ̄N−j+1
sN−j+1

)T
+
(
ψ̄N−j+1
sN−j+1

)T
S1,1(t∗+N−j+1) ˙̄ψN−j+1,

S3j+2,3j+2(0) = 0, S3j+2,3j+3(0) =
˙̃
ψN−j+1 − ψ̃N−j+1

x+
N−j+1

˙̄ψN−j+1,

S3j+3,3j+3(0) = κN−j+1 +
(

˙̄ψN−j+1
)T

S1,1(t∗+N−j+1) ˙̄ψN−j+1,

S3k+r,3l+1(0) = −ST
1,3k+r(t

∗+
N−l+1)ψ̄N−l+1

sN−l+1
, S3k+r,3l+2(0) = 0,

S3k+r,3l+3(0) = −ST
1,3k+r(t

∗+
N−l+1) ˙̄ψN−l+1

(26)

for j = 1, . . . , N , k = 1, . . . , N − 1, l = k + 1, . . . , N , and r = 1, 2, 3.
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With the definitions (21)-(25), we now have the main theorem for Problem (NE).

Theorem 3.1. Suppose that Assumptions 1 and 2 are satisfied, the perturbations
δx0, dψ and dγ are known, and the symmetric matrix Υ defined in (25) is invertible.
Then, the NE solution of Problem (NE) is given by

σ ≈
[
s∗T1 + dsT1 , . . . , s

∗T
N + dsTN

]T
, τ ≈

[
t∗1 + dt1, . . . , t

∗
N+1 + dtN+1

]T
, (27)

where dsi, i = 1, . . . , N , and dti, i = 1, . . . , N + 1, are obtained from Θ1 of (21)
derived by

[
Θ1

dπ̃

]
= −Υ−1


−Ip ST

1,2(0) R2(0)
0 ST

1,3(0) R3(0)
...

...
...

0 ST
1,3N+3(0) R3N+3(0)

0 0 0


 dψ
δx0

dγ

 . (28)

Proof. The backward sweep technique in [2] was developed to solve linear TPBVPs.
Its idea is to construct an auxiliary differential system according to the terminal
condition, and then integrate the auxiliary system backward to determine the dif-
ferential of the control at the initial point. Now, we extend this technique to linear
MPBVPs.
1) Boundary condition at t = t∗f . Using equations in (14b), we can rearrange [2]

equations (17a)-(17c) into δλ(t∗f )

dψ
−η̃Ttf dπ̃

 =

 Φxx ψT
x ΩT

x

∗ 0 ψ̇

∗ ∗ Ω̇

 δx(t∗f )

dν
dtf

+

 0
0

λ∗TfN+1
γ

dγ. (29)

Let  δλ(t)
dψ
−η̃Ttf dπ̃

 =

 S1,1(t) S1,2(t) S1,3(t)
∗ S2,2(t) S2,3(t)
∗ ∗ S3,3(t)

 δx(t)
dν
dtf

+

 R1(t)
R2(t)
R3(t)

 dγ (30)

for t ∈ (t∗N , t
∗
f ). Then, equation (20) can be written as

[
δẋ(t)

δλ̇(t)

]
=

[
AN+1 0 0

CN+1 − (AN+1)TS1,1 −(AN+1)TS1,2 −(AN+1)TS1,3

] δx(t)
dν
dtf


+

[
EN+1

−(AN+1)TR1 + FN+1

]
dγ. (31)

Now, differentiate equation (30) with respect to t, treating dψ, −η̃Ttf dπ̃, dν, dtf and
dγ as constants. Doing this yields δλ̇

0
0

=

 Ṡ1,1 Ṡ1,2 Ṡ1,3

∗ Ṡ2,2 Ṡ2,3

∗ ∗ Ṡ3,3

 δx
dν
dtf

+

 S1,1 S1,2 S1,3

∗ S2,2 S2,3

∗ ∗ S3,3

 δẋ
0
0

+

 Ṙ1

Ṙ2

Ṙ3

dγ.

(32)
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Then, by substituting δẋ and δλ̇ obtained from equation (31) into (32), it follows
that  Ṡ1,1 + S1,1A

N+1 + (AN+1)TS1,1 − CN+1

∗
∗

Ṡ1,2 + (AN+1)TS1,2 Ṡ1,3 + (AN+1)TS1,3

Ṡ2,2 Ṡ2,3

∗ Ṡ3,3

 δx(t)
dν
dtf


+

 Ṙ1 + S1,1E
N+1 + (AN+1)TR1 − FN+1

Ṙ2 + ST
1,2E

N+1

Ṙ3 + ST
1,3E

N+1

dγ = 0. (33)

To keep this identity valid for arbitrary δx(t), dν, dtf and dγ, it is necessary that
Ṡ1,1 = −S1,1A

N+1 − (AN+1)TS1,1 + CN+1,

Ṡ1,2 = −(AN+1)TS1,2, Ṡ1,3 = −(AN+1)TS1,3,

Ṡ2,2 = 0, Ṡ2,3 = 0, Ṡ3,3 = 0,

Ṙ1 = −S1,1E
N+1 − (AN+1)TR1 + FN+1,

Ṙ2 = −ST
1,2E

N+1, Ṙ3 = −ST
1,3E

N+1,

t ∈ (t∗N , t
∗
f ). (34)

and 
S1,1(t∗f ) = Φxx, S1,2(t∗f ) = ψT

x , S1,3(t∗f ) = ΩT
x ,

S2,2(t∗f ) = 0, S2,3(t∗f ) = ψ̇, S3,3(t∗f ) = Ω̇,

R1(t∗f ) = 0, R2(t∗f ) = 0, R3(t∗f ) = λ∗T(t∗f )fN+1
γ .

(35)

2) Boundary conditions at t = t∗i , i = N, . . . , 1. From equations (14c) and

ψ̄i
x+
i

= In, Φ̄i
x+
i x

+
i

= 0, Φ̄i
x+
i x

−
i

= Φ̄iT
x−
i x

+
i

= 0, Φ̄i
x+
i si

= Φ̄iT
six

+
i

= 0, i = N, . . . , 1,

which can be derived from (4), we can rearrange equations (18a)-(18f) into


0

δλ(t∗−i )
0
0
0

−η̃Ttidπ̃

 =



In 0 0 0 In ψ̃iT
x+
i

0

0 0 Φ̄i
x−
i x

−
i

Φ̄i
six

−
i

ψ̄iT
x−
i

ψ̃iT
x−
i

0

0 0 Φ̄i
x−
i si

Φ̄isisi ψ̄iTsi ψ̃iTsi
d
dt

(
Φ̄iTsi

)
0 In ψ̄i

x−
i

ψ̄isi 0 0 ˙̄ψi

0 ψ̃i
x+
i

ψ̃i
x−
i

ψ̃isi 0 0
˙̃
ψi

0 0 0 d
dt

(
Φ̄isi
) ˙̄ψiT

˙̃
ψiT κi



×



δλ(t∗+i )
δx(t∗+i )
δx(t∗−i )

dsi
dν̄i
dν̃i
dti


+


0
0
0
0
0
εi

dγ. (36)

Then, from the fourth block row of (36), we have

δx(t∗+i ) = −ψ̄i
x−
i

δx(t∗−i )− ψ̄isidsi −
˙̄ψidti. (37)
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Note that the next boundary point is at t = t∗i+1 as time increases. Let

δλ(t∗+i ) , S1,1

(
t∗+i
)
δx(t∗+i ) + S1,2

(
t∗+i
)

dν + S1,3

(
t∗+i
)

dtf

+

N−i∑
j=1

[
S1,3j+1

(
t∗+i
)

dsN−j+1 + S1,3j+2

(
t∗+i
)

dν̃N−j+1

+ S1,3j+3

(
t∗+i
)

dtN−j+1

]
+R1(t∗+i )dγ,

= − S1,1

(
t∗+i
)
ψ̄i
x−
i

δx(t∗−i ) + S1,2

(
t∗+i
)

dν + S1,3

(
t∗+i
)

dtf

+

N−i∑
j=1

[
S1,3j+1

(
t∗+i
)

dsN−j+1 + S1,3j+2

(
t∗+i
)

dν̃N−j+1

+ S1,3j+3

(
t∗+i
)

dtN−j+1

]
− S1,1

(
t∗+i
)
ψ̄isidsi − S1,1

(
t∗+i
) ˙̄ψidti +R1(t∗+i )dγ. (38)

Using equations (37) and (38), we can solve for dν̄i from the first block row of (36).
Specifically,

dν̄i = S1,1

(
t∗+i
)
ψ̄i
x−
i

δx(t∗−i )− S1,2

(
t∗+i
)

dν − S1,3

(
t∗+i
)

dtf

−
N−i∑
j=1

[
S1,3j+1

(
t∗+i
)

dsN−j+1 + S1,3j+2

(
t∗+i
)

dν̃N−j+1

+S1,3j+3

(
t∗+i
)

dtN−j+1

]
+ S1,1

(
t∗+i
)
ψ̄isidsi − ψ̃

iT
x+
i

dν̃i

+ S1,1

(
t∗+i
) ˙̄ψidti −R1(t∗+i )dγ. (39)

In equations (38) and (39), summations that have upper limits less than lower limits
are defined to be zero. Now, incorporate the following equation into (36),

Ψi+1 =

 S2,1(t∗+i ) . . . S2,3(N−i+1)(t
∗+
i )

...
. . .

...
S3(N−i+1),1(t∗+i ) . . . S3(N−i+1),3(N−i+1)(t

∗+
i )

[ δx(t∗+i )
Θi+1

]

+

 R2(t∗+i )
...

R3(N−i+1)(t
∗+
i )

dγ, (40)

which reduces to the second and third block rows in (30) with t = t∗+N when i = N .

After eliminating δx(t∗+i ), δλ(t∗+i ) and dν̄i by, respectively, equations (37), (38) and
(39), the expanded equation (36) becomes[

δλ(t∗−i )
Ψi

]
= Γi

[
δx(t∗−i )

Θi

]
+ Λidγ, (41)

where Γi is a block symmetric matrix with 3(N − i+ 2)× 3(N − i+ 2) blocks and
Λi is a block matrix with 3(N − i+ 2)× 1 blocks. The blocks of both Γi and Λi are
defined in Appendix A.

Similar to (30), we assume that[
δλ(t)
Ψi

]
= Si(t)

[
δx(t)
Θi

]
+Ri(t)dγ, t ∈ (t∗i−1, t

∗
i ), (42)
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where Si(t) is a 3(N−i+2)×3(N−i+2) block symmetric matrix with its (α, β) term,
α, β ∈ {1, . . . , 3(N − i+ 2)}, denoted by Sα,β , and Ri(t) is a 3(N − i+ 2)× 1 block
matrix with its α ∈ {1, . . . , 3(N − i + 2)} block denoted by Rα. Using a similar
argument as that given to obtain (34) and (35), we can show that the following
differential equations are valid:{

Ṡ1,1 =−S1,1A
i −AiTS1,1 + Ci, Ṡ1,j = −AiTS1,j , Ṡj,k = 0,

Ṙ1 =−S1,1E
i −AiTR1 + F i, Ṙj = −ST

1,jE
i,

t ∈ (t∗i−1, t
∗
i ),

(43)
where i = N, . . . , 1, j = 2, . . . , 3(N − i + 2), and k = j, . . . , 3(N − i + 2), with
boundary conditions{

Sα,β(t∗−i ) = Γiα,β ,

Rα(t∗−i ) = Λiα,
α = 1, . . . , 3(N − i+ 2), β = α, . . . , 3(N − i+ 2). (44)

Now, equations (34) and (43) with boundary conditions (35) and (44), i =
N, . . . , 1, form the two groups of switched impulsive systems (23) and (24), which
can be integrated backward with time from t = t∗f to t = t∗0 and subsystem index

i from N + 1 to 1 to obtain S1,α(t∗0) and Rα(t∗0), α = 1, . . . , 3N + 3. The other
terms Sα,β(t∗0), where α = 2, . . . , 3N+3, and β = α, . . . , 3N+3, can be obtained by
equations in (26) at t = t∗i , i = N + 1, . . . , 1. Then, it follows from equations (42)
(with i = 1 and t∗0 = 0) and (19) that the differentials of the parameters, i.e., Θ1

and dπ̃, can be solved from (28) for given dψ, δx0 and dγ if the symmetric matrix
Υ is invertible. Then, (σ, τ) can be derived by (27).

Remark 2. The results in [13, 14] demonstrate that the invertibility of Υ is equiv-
alent to certain controllability of the linear system (16a) with perturbed boundary
conditions (17b), (18d), (18e) and (19). In practice, the NE solution of Theorem
3.1 can be computed in a numerically stable way without explicitly inverting Υ by
using the triangular or orthogonal decomposition of Υ.

The procedure to compute the NE solution to Problem (NE) can be summarized
as follows.

Algorithm.

In the offline stage:
Step 1. With respect to the nominal values x0 and γ∗, and the nominal termi-

nal condition (3), solve Problem (N) by certain computational methods
like that of [9] to obtain the nominal control pair (σ∗, τ∗). The active
status of the inequality constraints (6) is known.

Step 2. The extremal state x∗(t) for t ∈ [0, t∗f ] can be obtained by integrating

(9a) forward with the control pair (σ∗, τ∗) and boundary conditions (11d).
Step 3. The differential equation (9b) and equations (10a)-(10c), (11a)-(11d),

(11g) and the active parts of (11e) and (12a) form a MPBVP from which
the costate λ∗(t) for t ∈ [0, t∗f ] and the parameters ν∗, π̃∗, and ν̄∗i and
ν̃∗i , i = 1, . . . , N , can be determined. The components of π∗ and ν̂∗i ,
i = 1, . . . , N , for the inactive inequality constraints are set to zero.

Step 4. Solve switched impulsive systems (23) and (26), and switched impul-
sive systems (24) backward with time from t = t∗f to t = t0 and subsys-

tem index from i = N + 1 to i = 1 to obtain Sα,β(0) and Rα(0), where
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α, β = 1, . . . , 3N + 3. Then, the Jacobian of the control (σ, τ) and multi-
pliers ν, π̃ and ν̃i, i = 1, . . . , N , with respect to the initial state, terminal
condition and system’s uncertain parameters, which is defined in (28), is
obtained.

In the online stage:
Step 5. When the perturbations δx0, dψ and dγ are available, the corrections

of the control dsi, i = 1, . . . , N , and dti, i = 1, . . . , N+1 can be computed
from (28). The NE solution for Problem (NE) can be derived by (27).

4. Numerical simulations. To verify our NE solution method, we present two
example problems in this section. One is the optimal shrimp harvesting problem
discussed in [9], and the other is the optimal impulsive control problem discussed
in [10, 9].
Example 1. Optimal shrimp harvesting. Let x1(t) be the number of shrimp
at time t, and let x2(t) be the average weight of shrimp (in grams) at time t, where
t is measured in weeks. The shrimp population growth can be modeled by the
dynamics, {

ẋ1(t) = −0.03x1(t), x1(0) = 40000,
ẋ2(t) = 3.5− γx1(t)x2(t), x2(0) = 1,

(45)

where γ = 0.00001. Suppose that shrimp are harvested at times t = ti, i = 1, . . . , N ,
and si is the fraction of the total shrimp stock harvested at t = ti. Then, we have
the following jump conditions at each time t = ti:{

x1(t+i ) = (1− si)x1(t−i ),
x2(t+i ) = x2(t−i ),

i = 1, . . . , N. (46)

The revenue obtained by harvesting a fraction si of the shrimp stock is given by

px2(t−i )six1(t−i )− h,

where p , $0.008 is the price per gram of shrimp and h = 50 is the fixed cost
of harvesting. At the specified final time t = tf = 13.2, all the remaining shrimp

will be harvested. The first N harvesting times τ , [t1, . . . , tN ] and fractions

σ , [s1, . . . , sN ] are subject to the following constraints:{
0.01 ≤ si ≤ 1, i = 1, . . . , N,
ti − ti−1 ≥ 0.01, i = 1, . . . , N + 1, t0 = 0, tN+1 = tf .

(47)

The problem is to choose τ and σ to maximize the total revenue

R(σ, τ) =

N∑
i=1

(
px2(t−i )six1(t−i )− h

)
+ px2(tf )x1(tf )− h

subject to the constraints (47).
Table 1 presents the nominal solutions for N = 1, 2, 3, which are computed by

the computational method in [9].
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Table 1. Nominal solutions of Example 1

N Solution Revenue
1 s∗1 = 0.584, t∗1 = 5.330 3128
2 s∗1 = 0.388, t∗1 = 4.270 3189

s∗2 = 0.454, t∗2 = 7.810
3 s∗1 = 0.289, t∗1 = 3.854 3172

s∗2 = 0.323, t∗2 = 6.120
s∗3 = 0.374, t∗3 = 9.110

Example 2. Optimal control for a nonlinear impulsive system. In this
example, the following impulsive system is considered:

ẋ1 =

{
0.01x21 + 2.02x1x2 − 0.99x22 − 2x1 + 4x2 + 1, if 0 < t < 1.8,
1.01x21 + 0.02x1x2 + 0.01x22 − 2x1 + 4x2 + 1, if 1.8 < t < 2,

(48a)

ẋ2 =


0.01x1x2 + 1.01x22 + 1.01x1x3 − 0.99x2x3 − 3x1 − x2 + 2x3 + 1,

if 0 < t < 1.8,
1.01x1x2 + 0.01x22 + 0.01x1x3 + 0.01x2x3 − 3x1 − x2 + 2x3 + 1,

if 1.8 < t < 2,

(48b)

ẋ3 =

{
0.01x22 + 2.02x2x3 − 0.99x23 − 6x2 + 1, if 0 < t < 1.8,
1.01x22 + 0.02x2x3 + 0.01x23 − 6x2 + 1, if 1.8 < t < 2

(48c)

with

x1(0) = 0.1, x2(0) = 0, x3(0) = 25, (49a)

x1(t+i ) =

{
4x1(t

−
i )+x1(t

−
i )x3(t

−
i )−x2

2(t
−
i )

4x1(t
−
i )−4x2(t

−
i )+x3(t

−
i )+4

, if i = 1, . . . , N − 1,

x1(t−i ), if i = N,
(49b)

x2(t+i ) =

{
4x2(t

−
i )+2x1(t

−
i )x3(t

−
i )−2x2

2(t
−
i )

4x1(t
−
i )−4x2(t

−
i )+x3(t

−
i )+4

, if i = 1, . . . , N − 1,

x2(t−i ), if i = N,
(49c)

x3(t+i ) =

{
4x3(t

−
i )+x1(t

−
i )x3(t

−
i )−x2

2(t
−
i )

4x1(t
−
i )−4x2(t

−
i )+x3(t

−
i )+4

, if i = 1, . . . , N − 1,

x3(t−i ), if i = N,
(49d)

where the N switching times, t1, . . . , tN , satisfy

0 = t0 < t1 < · · · < tN = 1.8.

Furthermore, it is assumed that

ti − ti−1 ≥ 0.1, i = 1, . . . , N. (50)

The problem is to choose the switching times, τ , {t1, . . . , tN−1}, to minimize the
cost function

J(τ) = x21(2) + 2x22(2) + x23(2)

subject to the dynamics (48), the boundary conditions (49), and the constraints
(50).

This optimal control problem has the following nominal solution for N = 3 [9]:

t∗1 = 1.0972, t∗2 = 1.7000, J∗ = 0.6844,

which satisfies

t∗3 − t∗2 = 0.1 (51)
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Hence, there is an active constraint along this nominal solution.
Now, we consider three simulation cases. Cases 1 and 2 are for problems without

parametric perturbation, while Case 3 considers the situation where parametric
perturbation is presented.

4.1. Case 1. In this case, we consider the optimal shrimp harvesting problem in
Example 1. The initial state is perturbed for N = 1, 2, 3, and our method in Theo-
rem 3.1 is used to compute the corresponding NE solutions. Table 2 presents results
for four different perturbations in the initial conditions. For each perturbation, we
show the nominal solution for the unperturbed system, the NE solution for the per-
turbed system, and the optimal open-loop solution for the perturbed system. We
also give the revenue of each solution for the perturbed system.

Table 2. Simulation results of Case 1

No. Initial perturbation Nominal solution NE solution Optimal solution
1 δx0 = [−4000, 0.1]T s∗1 = 0.584 s1 = 0.566 sop1 = 0.565

t∗1 = 5.330 t1 = 5.545 top1 = 5.558
Revenue 3001 3003 3003

2 δx0 = −[8000, 0.2]T s∗1 = 0.388 s1 = 0.359 sop1 = 0.355
s∗2 = 0.454 s2 = 0.420 sop2 = 0.414
t∗1 = 4.270 t1 = 4.814 top1 = 4.902
t∗2 = 7.810 t2 = 8.245 top2 = 8.298

Revenue 2858 2871 2871
3 δx0 = [10000,−0.25]T s∗1 = 0.289 s1 = 0.316 sop1 = 0.313

s∗2 = 0.323 s2 = 0.354 sop2 = 0.349
s∗3 = 0.374 s3 = 0.411 sop3 = 0.406
t∗1 = 3.854 t1 = 3.324 top1 = 3.424
t∗2 = 6.120 t2 = 5.616 top2 = 5.699
t∗3 = 9.110 t3 = 8.743 top3 = 8.795

Revenue 3487 3499 3499
4 δx0 = [12000, 0.3]T s∗1 = 0.289 s1 = 0.323 sop1 = 0.319

s∗2 = 0.323 s2 = 0.362 sop2 = 0.356
s∗3 = 0.374 s3 = 0.422 sop3 = 0.415
t∗1 = 3.854 t1 = 3.034 top1 = 3.164
t∗2 = 6.120 t2 = 5.366 top2 = 5.471
t∗3 = 9.110 t3 = 8.576 top3 = 8.639

Revenue 3556 3579 3580

As seen from Table 2, the difference between the revenue of the nominal solution
and that of the optimal one enlarges with the increasing initial perturbation. On
the contrary, the revenue of the NE solution is equal to the optimal one in the first
three situations where the perturbation is less or equal to 25% of the corresponding
nominal value. Clearly, our NE solutions approximate the optimal ones well in the
presence of the initial state perturbation.

However, all of the constraints (47) in this example are inactive along the nominal
solutions. We next consider Example 2 to verify our method in the case where some
constraints are active.



606 C. JIANG, K. L. TEO, R. LOXTON AND G.-R. DUAN

4.2. Case 2. Along the nominal solution of Example 2 with N = 3, we compute
the NE solutions using the method in Theorem 3.1 again. Simulation results are
listed in Table 3.

Table 3. Simulation results of Case 2

No. Initial perturbation Nominal solution NE solution Optimal solution
1 δx0 = [−0.2, 1, 10]T t∗1 = 1.0972 t1 = 1.0482 top1 = 1.0410

t∗2 = 1.7000 t2 = 1.7000 top2 = 1.7000
Cost 0.6961 0.6939 0.6939

2 δx0 = [0.2,−1,−10]T t∗1 = 1.0972 t1 = 1.1462 top1 = 1.1447
t∗2 = 1.7000 t2 = 1.7000 top2 = 1.7000

Cost 0.6721 0.6702 0.6702
3 δx0 = [−0.2, 1,−10]T t∗1 = 1.0972 t1 = 1.0759 top1 = 1.0506

t∗2 = 1.7000 t2 = 1.7000 top2 = 1.7000
Cost 0.6796 0.6787 0.6783

In Table 3, the definitions of the nominal solution, the NE solution, and the
optimal solution are the same as those in Table 2. We see that Assumption 2 is
satisfied in all situations since each top2 in the optimal solutions is equal to 1.7000.
The computed NE solutions are also satisfied as each t2 computed is equal to 1.7000
and their corresponding costs are close to the optimal ones.

Until now, all the system’s models in the simulations are accurate. In the fol-
lowing case, we will consider the situation where some of the system’s parameters
are perturbed.

4.3. Case 3. Revisit Example 1 again. Suppose that the model parameter γ in
the system (45) is uncertain. Its nominal value is γ∗ = 0.00001. Along the nominal
trajectory for N = 2, 3, the NE solutions in the presence of parametric perturbation
can be computed by our method in Theorem 3.1. Simulation results are presented
in Table 4.

In the first two situations, there are only parametric perturbations. The NE
solutions computed by the method in Theorem 3.1 approximate the optimal ones
well in the presence of ±20% parametric perturbations. In the next two simulations,
initial state perturbations are also presented. We can see that the NE solutions
computed by our method have revenues close to those of the optimal solutions,
while the revenues of the nominal solutions are much less in comparison.

5. Conclusion. In this paper, we have developed a NE solution for a class of
switched impulsive systems with constraints on the switching times and parameters.
The illustrated examples show that our NE solutions adapt to perturbations in the
initial state, terminal condition and system’s parameters. Further work would be
of considerable importance if some of the assumptions can be relaxed.

Appendix A. The block terms of the symmetric matrix Γi and the matrix Λi are
defined as:

Γi1,1 , ψ̄iT
x−
i

S1,1(t∗+i )ψ̄i
x−
i

+ Φ̄i
x−
i x

−
i

, Γi1,2 , −ψ̄iT
x−
i

S1,2(t∗+i ), Γi1,3 , −ψ̄iT
x−
i

S1,3(t∗+i ),

Γi2,2 , S2,2(t∗+i ), Γi2,3 , S2,3(t∗+i ), Γi3,3 , S3,3(t∗+i ),
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Table 4. Simulation results of Case 3

No. Perturbation Nominal solution NE solution Optimal solution
1 dγ = −2× 10−6 s∗1 = 0.388 s1 = 0.360 sop1 = 0.356

s∗2 = 0.454 s2 = 0.421 sop2 = 0.416
t∗1 = 4.270 t1 = 4.755 top1 = 4.846
t∗2 = 7.810 t2 = 8.205 top2 = 8.261

Revenue 3619 3634 3634
2 dγ = 2× 10−6 s∗1 = 0.289 s1 = 0.311 sop1 = 0.309

s∗2 = 0.323 s2 = 0.348 sop2 = 0.345
s∗3 = 0.374 s3 = 0.405 sop3 = 0.401
t∗1 = 3.854 t1 = 3.369 top1 = 3.434
t∗2 = 6.120 t2 = 5.667 top2 = 5.720
t∗3 = 9.110 t3 = 8.785 top3 = 8.818

Revenue 2831 2838 2838
3 dγ = −2× 10−6 s∗1 = 0.388 s1 = 0.330 sop1 = 0.322

δx0 = −[8000, 0.2]T s∗2 = 0.454 s2 = 0.386 sop2 = 0.374
t∗1 = 4.270 t1 = 5.299 top1 = 5.547
t∗2 = 7.810 t2 = 8.641 top2 = 8.773

Revenue 3193 3248 3249
4 dγ = 2× 10−6 s∗1 = 0.289 s1 = 0.334 sop1 = 0.330

δx0 = [8000, 0.2]T s∗2 = 0.323 s2 = 0.374 sop2 = 0.369
s∗3 = 0.374 s3 = 0.437 sop3 = 0.429
t∗1 = 3.854 t1 = 2.822 top1 = 2.989
t∗2 = 6.120 t2 = 5.164 top2 = 5.290
t∗3 = 9.110 t3 = 8.429 top3 = 8.496

Revenue 3043 3077 3078

Γi1,3j+1 ,

{
ψ̄iT
x−
i

S1,1(t∗+i )ψ̄isi + Φ̄i
six

−
i

, if i = N − j + 1,

−ψ̄iT
x−
i

S1,3j+1(t∗+i ), if i = N − j, . . . , 1,

Γi1,3j+2 ,

 ψ̃iT
x−
i

−
(
ψ̃i
x+
i

ψ̄i
x−
i

)T
, if i = N − j + 1,

−ψ̄iT
x−
i

S1,3j+2(t∗+i ), if i = N − j, . . . , 1,

Γi1,3j+3 ,

{
ψ̄iT
x−
i

S1,1(t∗+i ) ˙̄ψi, if i = N − j + 1,

−ψ̄iT
x−
i

S1,3j+3(t∗+i ), if i = N − j, . . . , 1,

Γi2,3j+1 ,

{
−ST

1,2(t∗+i )ψ̄isi , if i = N − j + 1,
S2,3j+1(t∗+i ), if i = N − j, . . . , 1,

Γi2,3j+2 ,

{
0, if i = N − j + 1,
S2,3j+2(t∗+i ), if i = N − j, . . . , 1,

Γi2,3j+3 ,

{
−ST

1,2(t∗+i ) ˙̄ψi, if i = N − j + 1,
S2,3j+3(t∗+i ), if i = N − j, . . . , 1,

Γi3,3j+1 ,

{
−ST

1,3(t∗+i )ψ̄isi , if i = N − j + 1,
S3,3j+1(t∗+i ), if i = N − j, . . . , 1,

Γi3,3j+2 ,

{
0, if i = N − j + 1,
S3,3j+2(t∗+i ), if i = N − j, . . . , 1,

Γi3,3j+3 ,

{
−ST

1,3(t∗+i ) ˙̄ψi, if i = N − j + 1,
S3,3j+3(t∗+i ), if i = N − j, . . . , 1,
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Γi3j+1,3j+1 ,

{
ψ̄iTsi S1,1(t∗+i )ψ̄isi + Φ̄isisi , if i = N − j + 1,
S3j+1,3j+1(t∗+i ), if i = N − j, . . . , 1,

Γi3j+1,3j+2 ,

{
ψ̃iTsi −

(
ψ̃i
x+
i

ψ̄isi

)T
, if i = N − j + 1,

S3j+1,3j+2(t∗+i ), if i = N − j, . . . , 1,

Γi3j+1,3j+3 ,

{
d
dt

(
Φ̄iTsi

)
+ ψ̄iTsi S1,1(t∗+i ) ˙̄ψi, if i = N − j + 1,

S3j+1,3j+3(t∗+i ), if i = N − j, . . . , 1,

Γi3j+2,3j+2 ,

{
0, if i = N − j + 1,
S3j+2,3j+2(t∗+i ), if i = N − j, . . . , 1,

Γi3j+2,3j+3 ,

{
˙̃
ψi − ψ̃i

x+
i

˙̄ψi, if i = N − j + 1,

S3j+2,3j+3(t∗+i ), if i = N − j, . . . , 1,

Γi3j+3,3j+3 ,

{
κi + ˙̄ψiTS1,1(t∗+i ) ˙̄ψi, if i = N − j + 1,
S3j+3,3j+3(t∗+i ), if i = N − j, . . . , 1,

Γi3k+r,3l+1 ,

{
−ST

1,3k+r(t
∗+
i )ψ̄isi , if i = N − l + 1,

S3k+r,3l+1(t∗+i ), if i = N − l, . . . , 1,

Γi3k+r,3l+2 ,

{
0, if i = N − l + 1,
S3k+r,3l+2(t∗+i ), if i = N − l, . . . , 1,

Γi3k+r,3l+3 ,

{
−ST

1,3k+r(t
∗+
i ) ˙̄ψi, if i = N − l + 1,

S3k+r,3l+3(t∗+i ), if i = N − l, . . . , 1,

and

Λi1 , −ψ̄iT
x−
i

R1(t∗+i ), Λi2 , R2(t∗+i ), Λi3 , R3(t∗+i ), Λi3k+r , R3k+r(t
∗+
i ),

Λi3(N−i+1)+1 , −ψ̄iTsi R1(t∗+i ), Λi3(N−i+1)+2 , 0, Λi3(N−i+1)+3 , − ˙̄ψiTR1(t∗+i ) + εi,

where j = 1, . . . , N − i+ 1, k = 1, . . . , N − i, l = k+ 1, . . . , N − i+ 1, and r = 1, 2, 3.
Note that block terms Γi3k+r,3l+1, Γi3k+r,3l+2 and Γi3k+r,3l+3 exist only if i ≤ N − 1.
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