49 research outputs found

    Regulation of branching dynamics by axon-intrinsic asymmetries in Tyrosine Kinase Receptor signaling

    Get PDF
    Axonal branching allows a neuron to connect to several targets, increasing neuronal circuit complexity. While axonal branching is well described, the mechanisms that control it remain largely unknown. We find that in the Drosophila CNS branches develop through a process of excessive growth followed by pruning. In vivo high-resolution live imaging of developing brains as well as loss and gain of function experiments show that activation of Epidermal Growth Factor Receptor (EGFR) is necessary for branch dynamics and the final branching pattern. Live imaging also reveals that intrinsic asymmetry in EGFR localization regulates the balance between dynamic and static filopodia. Elimination of signaling asymmetry by either loss or gain of EGFR function results in reduced dynamics leading to excessive branch formation. In summary, we propose that the dynamic process of axon branch development is mediated by differential local distribution of signaling receptors

    Algae Drive Enhanced Darkening of Bare Ice on the Greenland Ice Sheet

    Get PDF
    Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light-absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the ice sheet surface darkening, based on field measurements of surface reflectance and concentrations of light-absorbing impurities, including pigmented algae, during the 2014 melt season in the southwestern part of the ice sheet. The impact of algae on bare ice darkening in the study area was greater than that of nonalgal impurities and yielded a net albedo reduction of 0.038 ± 0.0035 for each algal population doubling. We argue that algal growth is a crucial control of bare ice darkening, and incorporating the algal darkening effect will improve mass balance and sea level projections of the Greenland ice sheet and ice masses elsewhere

    A prospective study of differences in duodenum compared to remaining small bowel motion between radiation treatments: Implications for radiation dose escalation in carcinoma of the pancreas

    Get PDF
    PURPOSE: As a foundation for a dose escalation trial, we sought to characterize duodenal and non-duodenal small bowel organ motion between fractions of pancreatic radiation therapy. PATIENTS AND METHODS: Nine patients (4 women, 5 men) undergoing radiation therapy were enrolled in this prospective study. The patients had up to four weekly CT scans performed during their course of radiation therapy. Pancreas, duodenum and non-duodenal small bowel were then contoured for each CT scan. On the initial scan, a four-field plan was generated to fully cover the pancreas. This plan was registered to each subsequent CT scan. Dose-volume histogram (DVH) analyses were performed for the duodenum, non-duodenal small bowel, large bowel, and pancreas. RESULTS: With significant individual variation, the volume of duodenum receiving at least 80% of the prescribed dose was consistently greater than the remaining small bowel. In the patient with the largest inter-fraction variation, the fractional volume of non-duodenal small bowel irradiated to at least the 80% isodose line ranged from 1% to 20%. In the patient with the largest inter-fraction variation, the fractional volume of duodenum irradiated to at least the 80% isodose line ranged from 30% to 100%. CONCLUSION: The volume of small bowel irradiated during four-field pancreatic radiation therapy changes substantially between fractions. This suggests dose escalation may be possible. However, dose limits to the duodenum should be stricter than for other segments of small bowel

    Differential patterns of age-related cortical and subcortical functional connectivity in 6-to-10 year old children: A connectome-wide association study

    Get PDF
    Introduction: Typical brain development is characterized by specific patterns of maturation of functional networks. Cortico-cortical connectivity generally increases, whereas subcortico-cortical connections often decrease. Little is known about connectivity changes amongst different subcortical regions in typical development. Methods: This study examined age- and gender-related differences in functional connectivity between and within cortical and subcortical regions using two different approaches. The participants included 411 six- to ten-year-old typically developing children sampled from the population-based Generation R study. Functional connectomes were defined in native space using regions of interest from subject-specific FreeSurfer segmentations. Connections were defined as: (a) the correlation between regional mean time-series; and (b) the focal maximum of voxel-wise correlations within FreeSurfer regions. The association of age and gender with each functional connection was determined using linear regression. The preprocessing included the exclusion of children with excessive head motion and scrubbing to reduce the influence of minor head motion during scanning. Results: Cortico-cortical associations echoed previous findings that connectivity shifts from short to long-range with age. Subcortico-cortical associations with age were primarily negative in the focal network approach but were both positive and negative in the mean time-series network approach. Between subcortical regions, age-related associations were negative in both network approaches. Few connections had significant associations with gender. Conclusions: The present study replicates previously reported age-related patterns of connectivity in a relatively narrow age-range of children. In addition, we extended these findings by demonstrating decreased connectivity within the subcortex with increasing age. Lastly, we show the utility of a more focal approach that challenges the spatial assumptions made by the traditional mean time series approach

    Algae drive enhanced darkening of bare ice on the Greenland ice sheet

    Get PDF
    Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light-absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the ice sheet surface darkening, based on field measurements of surface reflectance and concentrations of light-absorbing impurities, including pigmented algae, during the 2014 melt season in the southwestern part of the ice sheet. The impact of algae on bare ice darkening in the study area was greater than that of non-algal impurities and yielded a net albedo reduction of 0.038 ± 0.0035 for each algal population doubling. We argue that algal growth is a crucial control of bare ice darkening, and incorporating the algal darkening effect will improve mass balance and sea level projections of the Greenland ice sheet and ice masses elsewhere

    Citizen science reveals widespread negative effects of roads on amphibian distributions

    Get PDF
    Landscape structure is important for shaping the abundance and distribution of amphibians, but prior studies of landscape effects have been species or ecosystem-specific. Using a large-scale, citizen science-generated database, we examined the effects of habitat composition, road disturbance, and habitat split (i.e. the isolation of wetland from forest by intervening land use) on the distribution and richness of frogs and toads in the eastern and central United States. Undergraduates from nine biology and environmental science courses collated occupancy data and characterized landscape structure at 1617 sampling locations from the North American Amphibian Monitoring Program. Our analysis revealed that anuran species richness and individual species distributions were consistently constrained by both road density and traffic volume. In contrast, developed land around wetlands had small, or even positive effects on anuran species richness and distributions after controlling for road effects. Effects of upland habitat composition varied among species, and habitat split had only weak effects on species richness or individual species distributions. Mechanisms underlying road effects on amphibians involve direct mortality, behavioral barriers to movement, and reduction in the quality of roadside habitats. Our results suggest that the negative effects of roads on amphibians occur across broad geographic regions, affecting even common species, and they underscore the importance of developing effective strategies to mitigate the impacts of roads on amphibian populations

    Direct measurements of meltwater runoff on the Greenland ice sheet surface

    Get PDF
    Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km2 moulin-terminating internally drained catchment (IDC) on Greenland?s midelevation (1,207?1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systemspublishersversionPeer reviewe

    Place branding of seaports in the Middle East

    Get PDF
    This paper analyses seaports’ brand personalities as a means of understanding similarities and differences of these important locations and their relationship with their host place image. Drawing upon Aaker’s (J Mark Res 34:347–356, 1997) brand personality construct, the study presents lexical analysis from the websites of nine seaports in the Middle East. Each seaport’s website is content analysed, and the brand personality is measured using Aaker’s (1997) framework and Opoku’s (Licentiate Thesis, Lulea University of Technology, ISSN, 1402-1757, 2005) dictionary of synonyms. Findings show that seaports have developed a level of isomorphism upon particular dimensions of brand image; however, the findings also show the most distinctive seaports were linking their seaport to their place brand. In particular, the findings show only the Port of Jebel Ali has a clear and distinctive brand personality and to a lesser extent the Ports of Sohar, Shahid Rajee and Khor Fakkan. The research has important management implications of branding for public diplomacy and demonstrates seaport brand positioning in relation to place branding, used to inform public communication and marketing
    corecore