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Abstract
Introduction: Typical brain development is characterized by specific patterns of mat-
uration of functional networks. Cortico-cortical connectivity generally increases, 
whereas subcortico-cortical connections often decrease. Little is known about con-
nectivity changes amongst different subcortical regions in typical development.
Methods: This study examined age-  and gender-related differences in functional 
connectivity between and within cortical and subcortical regions using two different 
approaches. The participants included 411 six- to ten-year-old typically developing 
children sampled from the population-based Generation R study. Functional connec-
tomes were defined in native space using regions of interest from subject-specific 
FreeSurfer segmentations. Connections were defined as: (a) the correlation between 
regional mean time-series; and (b) the focal maximum of voxel-wise correlations 
within FreeSurfer regions. The association of age and gender with each functional 
connection was determined using linear regression. The preprocessing included the 
exclusion of children with excessive head motion and scrubbing to reduce the influ-
ence of minor head motion during scanning.
Results: Cortico-cortical associations echoed previous findings that connectivity 
shifts from short to long-range with age. Subcortico-cortical associations with age 
were primarily negative in the focal network approach but were both positive and 
negative in the mean time-series network approach. Between subcortical regions, 
age-related associations were negative in both network approaches. Few connec-
tions had significant associations with gender.
Conclusions: The present study replicates previously reported age-related patterns 
of connectivity in a relatively narrow age-range of children. In addition, we extended 
these findings by demonstrating decreased connectivity within the subcortex with 
increasing age. Lastly, we show the utility of a more focal approach that challenges 
the spatial assumptions made by the traditional mean time series approach.
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1  | INTRODUC TION

Understanding typical brain development is critical to understand-
ing the mechanisms behind neuropsychiatric disorders. Mental 
health in adulthood is highly dependent on brain development be-
ginning in the womb and continuing throughout adolescence and 
into adulthood. One theory is that the neurobiological underpin-
nings of mental illnesses are largely driven by atypical brain connec-
tivity originating in childhood (Di Martino et al., 2014; Menon, 2013). 
Through an understanding of typical connectivity, we can identify 
aberrant patterns associated with neuropsychiatric disorders.

Functional connectivity changes dramatically in the early years 
of life. In infancy, the brain’s short-range connections are dominant 
(Gao et al., 2011; Di Martino et al., 2014). Throughout childhood and 
adolescence, functional connectivity becomes increasingly distrib-
uted, with long-range connections becoming stronger and short-
range connectivity decreasing (Fair et al., 2009; Di Martino et al., 
2014; Rubia, 2013). Furthermore, graph theory studies have also 
demonstrated that while topological features of brain connectivity 
are mature by age eight, the hierarchical and modularity of global 
brain networks continues to mature into adulthood (Menon, 2013).

Functional connectivity between subcortical and cortical re-
gions has been shown to decrease with age in children (Cerliani 
et al., 2015; Greene et al., 2014; Sato et al., 2015; Supekar, Musen, 
& Menon, 2009). However, other studies have found the opposite 
pattern (Sato et al., 2015; Solé-padullés et al., 2015). Age-related dif-
ferences in functional connectivity between subcortical and cortical 
regions are accompanied by stronger cortico-cortical connectivity in 
older children (Supekar et al., 2009). There have been few studies ex-
amining the role of connections between different subcortical brain 
structures in children. Gaining a better understanding of the age-
related development of subcortical functional connectivity provides 
an important baseline for the study of childhood psychopathology.

Development of brain connectivity is increasingly being stud-
ied using whole-brain connectomes derived from resting-state 
functional MRI (rs-fMRI; Di Martino et al., 2014; Rubia, 2013). 
Connectomes represent brain connectivity between pairs of grey 
matter ROI’s (Bullmore & Sporns, 2009; Rubinov & Sporns, 2010). 
Since connectome approaches evaluate networks within the entire 
brain, they are well suited to evaluate the major changes taking place 
in typical neurodevelopment.

In this study, we utilized two connectome approaches to eval-
uate age and gender associations in a large group of school age 
children across the functional connectome. First, we used the 
correlation of the mean time series for brain regions involved in a 
given connection to express uniform and homogenous connectivity. 
However, connectivity in some regions becomes increasingly focal 
during development (Durston et al., 2006), which we captured with 
a new measure of connectivity that determines the focal maxima of 
correlations between ROIs. Each approach measures different as-
pects of connectivity, which can help parse whether connectivity 
differences in development involve larger brain regions or tend to be 
more focal within an ROI.

Considering the mixed findings in the literature related to corti-
cal and subcortical functional connectivity, we aimed to determine 
age related differences in connectivity between pairs of cortical and 
subcortical regions. In addition, we were interested in determin-
ing how functional connectivity patterns differ with age between 
pairs of subcortical regions. This has not yet been investigated in 
previous studies. Previous studies examining rs-fMRI connectivity 
in typical development included subjects with a broad age range or 
had small to moderate sample sizes (n < 200 in most cases; Cerliani 
et al., 2015; Fair et al., 2009; Greene et al., 2014; Rubia, 2013; Sato 
et al., 2015; Solé-padullés et al., 2015; Supekar et al., 2009). Thus, 
to reduce heterogeneity, which could contribute to the mixed 
findings, we used a large sample of 6-to-10 year-old children from 
a population-based cohort. By focusing on a narrow age range in 
a large sample, we aimed to shed new light on brain development 
within a narrow period of childhood. This age range is particularly 
interesting because it is a period in which the brain, behavior, and 
cognition are rapidly maturing (Livy et al., 1997; Mous et al., 2016). 
This critical phase in development can provide clues into typical 
brain function, which can then be extended to evaluate mechanisms 
governing psychopathology.

2  | MATERIAL S AND METHODS

2.1 | Participants

The participants of this study included a subgroup of children partic-
ipating in the Generation R Study, which is a large, population-based 
prenatal cohort study in Rotterdam, the Netherlands (Jaddoe et al., 
2012). Magnetic resonance imaging (MRI) scans were obtained in a 
total of 1,070 children between 6 and 10 years of age. The proto-
col for recruitment and study design is described in detail elsewhere 
(White et al., 2013). General exclusion criteria consisted of severe 
motor or sensory disorders (deafness or blindness), neurological dis-
orders, moderate to severe head injuries with loss of consciousness, 
claustrophobia, and contraindications to MRI. Of 1,070 children who 
visited the research center for an MRI, 964 children underwent an 
rs-fMRI scan. Of those children, 227 were screened as having prob-
lem behaviors using the Child Behavior Checklist (see description 
below) and were excluded from the analyses. Furthermore, sub-
jects were excluded due to excessive head motion (n = 88), failed 
registrations (n = 21), failed or low quality cortical segmentations 
(n = 126), less than 125 volumes left after data scrubbing (n = 5) and 
an incidental finding (n = 1). The final dataset included 411 subjects. 
Informed consent was obtained from parents, and all procedures 
were approved by the Medical Ethics Committee of the Erasmus 
MC, University Medical Center Rotterdam.

2.2 | Behavioral and IQ assessment

The children were assessed for behavioral and emotional prob-
lems using the Child Behavior Checklist (CBCL/1½-5), which is 
a questionnaire filled out by their mothers (93%) or fathers (7%; 
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Achenbach & Rescorla, 2000). The CBCL is a 99-item inventory 
covering various behaviors reported by parents. It uses a Likert 
response format (i.e., “not true”, “somewhat true” and “very true”). 
The CBCL was used to select children without problem behavior 
to ensure that associations were independent of major behavioral 
problems. This was accomplished by excluding participants with 
a score above the clinical cutoff on any syndrome (98th percen-
tile), DSM-oriented (98th percentile), or broadband scale (91st 
percentile), according to Dutch norms (Tick, van der Ende, Koot, 
& Verhulst, 2007). Furthermore, to minimize the potential for re-
sidual confounding, the square root of the sum of all items was 
used to compute a total problem score to be used as a covariate 
in analyses.

Two subtests from a Dutch nonverbal IQ test (i.e., Snijders-
Oomen Niet-verbale intelligentie test, revisie [Tellegen, Winkel, 
Wijnberg-Williams, & Laros, 2005]) were conducted, as described in 
Ghassabian et al. (2014). The mosaics subtest assessed spatial visual-
ization abilities. The categories subtest assessed abstract reasoning 
abilities.

2.3 | MR-image acquisition

Magnetic resonance imaging data were acquired on a General 
Electric MR-750 3-Tesla whole-body scanner (General Electric, 
Milwaukee, WI) using a standard 8-channel, receive-only head 
coil. A three-plane localizer was run first and used to position all 
subsequent scans. Structural T1-weighted images were acquired 
using a fast spoiled gradient-recalled echo (FSPGR) sequence 
(TR = 10.3 ms, TE = 4.2 ms, TI = 350 ms, NEX = 1, flip angle = 16°, 
matrix = 256 × 256, field of view (FOV) = 230.4 mm, slice thick-
ness = 0.9 mm). Echo planar imaging was used for the rs-fMRI ses-
sion with the following parameters: TR = 2,000 ms, TE = 30 ms, 
flip angle = 85°, matrix = 64 × 64, FOV = 230 mm × 230 mm, slice 
thickness = 4 mm. In a previous study the number of TRs neces-
sary for functional connectivity analyses was determined, and 
therefore the first set of acquisitions acquired 250 TRs (acquisition 
time = 8 min 20 s; White et al., 2014). After it was determined that 
fewer TRs provided stable networks of higher quality (less motion), 
the number of TRs was reduced to 160 (acquisition time = 5 min 20; 
White et al., 2014). Children were instructed to keep their eyes 
closed and not to think about anything in particular during the rs-
fMRI scan. After the scan session they were asked how the scan 
went and whether they fell asleep during the scan.

2.4 | MR-image processing

2.4.1 | Anatomical Image Processing

Predefined ROIs were defined in native space and used as the ana-
tomical regions to quantify time-series data for brain-wide connec-
tivity analysis. A total of 34 cortical regions and seven subcortical 
ROIs were defined in each hemisphere of the brain in native space 
from T1-weighted images using the FreeSurfer analysis suite (https://

surfer.nmr.mgh.harvard.edu; Fischl et al., 2004). Details about the 
FreeSurfer data processing and quality control in the Generation R 
Study are described elsewhere (Mous et al., 2014). The FreeSurfer 
image, including the cortical and subcortical labels were registered 
to the rs-fMRI data by applying the transformation matrix resulting 
from a 12 degree of freedom affine registration of the T1-weighted 
image to the rs-fMRI data (Greve & Fischl, 2009). Thus, all time-
series for analyses were extracted from native fMRI space.

2.4.2 | Resting-state image processing

Resting-state fMRI data were preprocessed using a combination of 
tools from the Analysis of Functional NeuroImages package (AFNI; 
Cox, 1996), the Functional MRI of the Brain Software Library (FSL; 
Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012), and in-
house software written in Python version 2.7.3. For the rs-fMRIs 
acquired with 250 TRs, only the first 160 volumes were used so 
that all time courses contained the same amount of information. 
Preprocessing of the rs-fMRI began with slice-timing correction, mo-
tion correction, removing the first four volumes, and 0.01 Hz high-
pass temporal filtering. Next, the six motion correction parameters, 
the mean white matter signal and mean cerebral spinal fluid (CSF) 
signal were regressed out of each voxel’s time course (Fox, Zhang, 
Snyder, & Raichle, 2009). Finally, data scrubbing was used to further 
compensate for motion, removing volumes with excessive move-
ment (i.e., greater than 0.5 mm root mean squared relative motion; 
Power, Barnes, Snyder, Schlaggar, & Petersen, 2012, 2013) since 
head motion during scanning can amplify developmental differences 
in connectivity (Power et al., 2012). This effect is significantly re-
duced after compensating for movement (Di Martino et al., 2014).

Given geometric distortions resulting from susceptibility arti-
facts, some ROIs were excluded from the analyses. In order to iden-
tify affected ROIs, FSL’s Brain Extraction Tool (Smith, 2002) was 
used to create a brain mask from the rs-fMRI. The proportion of vox-
els in each ROI that intersected with the brain mask was computed 
for each subject. Overlap between voxels believed to represent true 
signal (i.e., within the brain mask) was found to be low in ROIs known 
to be affected by susceptibility artifacts. ROIs with a mean overlap 
across subjects of less than 90% were visually inspected and those 
ROIs with consistently low overlap were excluded from the analyses 
(entorhinal cortex, frontal pole, inferior temporal gyrus, lateral orbi-
tofrontal cortex, medial orbitofrontal cortex, and temporal pole). In 
the remaining ROIs, only voxels in the intersection of the ROI and 
the brain mask were included in the analyses. See Table 1 for a listing 
of included ROIs.

2.5 | Brain-wide connectivity analysis

Brain-wide connectivity analyses were conducted in rs-fMRI na-
tive space, after the FreeSurfer labels were mapped to the rs-fMRI 
data. The labels and preprocessed rs-fMRI data were used to cal-
culate pairwise region-to-region functional connectivity. Before 
calculating functional connectivity, a 3 × 3 × 3 voxel median spatial 

https://surfer.nmr.mgh.harvard.edu
https://surfer.nmr.mgh.harvard.edu
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filter was applied to the preprocessed rs-fMRI to increase the signal 
to noise ratio. Two types of functional connectivity matrices were 
calculated. First, the connection weight for each pair of ROIs was 
calculated using a Pearson correlation coefficient of the mean time-
series between all pairs of ROI’s (MeanTS). For the second approach, 
Pearson correlation coefficients were computed between all pairs 

of voxels within two ROIs, and the pair with the highest Pearson 
correlation coefficient was selected to represent the connection be-
tween those two ROIs. We coin this approach the “Anatomic and 
Local Peak Activity Correlation Analysis” (ALPACA). The first ap-
proach represents connectivity which is homogeneous over a pair of 
ROIs, whereas the second approach represents the peak connectiv-
ity which is localized to focal areas within a pair of ROIs.

For both types of connectivity, only voxels that were part of the 
fMRI brain mask were considered. This minimized voxels affected by 
geometric distortions from influencing the connection weight. Prior 
to statistical analyses, to satisfy normality assumptions for paramet-
ric statistics, Pearson correlation coefficients were converted to a 
normal distribution using the Fisher’s r-to-z transformation.

2.6 | Statistical analysis

Statistical analyses were conducted with the statsmodels (Seabold 
& Perktold, 2010), scipy (Oliphant, 2007) and numpy (Van Der Walt, 
Colbert, & Varoquaux, 2011) packages in Python (v2.7). For each 
connection, two regression models were fitted, one for MeanTS 
and one for ALPACA. In both cases, age, gender, and the CBCL total 
problem score were included as independent variables, and main ef-
fects were examined for age and gender. The CBCL total problem 
score was included to account for residual behavioral differences 
among included children. To control for multiple testing, the num-
ber of effective independent tests/connections, Meff, was computed 
for both ALPACA and MeanTS according to the method outlined in 
(Li, Yeung, Cherny, & Sham, 2012). The threshold of significance was 
determined using the Sidak correction, �corr=1− (1−�)(1∕Meff), where 
α = 0.05. We additionally conducted a separate analysis in which in-
teraction between age and gender was tested by adding an interac-
tion term to the model. Multiple testing was controlled using the 
same thresholds as in the main-effects model.

2.7 | Visualization

Connectograms (van Horn et al., 2012) were used to visual-
ize associations of age and gender with functional connectivity. 
Connectograms are used in brain connectivity analyses to show re-
lationships between ROIs in a circular two-dimensional representa-
tion. ROIs are positioned around the outside of the circle. A given 
connection is represented by a line between the associated ROIs, 
where color and thickness are used to indicate specific properties 
of a connection. In this study, ROIs were grouped by anatomy (see 
Table 1 for groupings) and by hemisphere. Only connections with sig-
nificant associations are shown. Red and blue represent positive and 
negative associations with age or male > female and female > male in 
the case of gender respectively. Increased color intensity represents 
increased significance. Connectograms are often easier to interpret 
than three-dimensional representations of connectivity in anatomi-
cal space (Langen, White, Ikram, Vernooij, & Niessen, 2015).

Worm plots were used to directly compare groups of connec-
tions between MeanTS and ALPACA (Langen et al., 2015). Each 

TABLE  1 Regions used in connectome analysis, grouped by 
location in the brain

Cluster Region Abbreviation

Frontal (Fro) Caudal anterior cingulate 
cortex

Cac

Caudal middle frontal 
gyrus

Cmf

Isthmus of cingulate gyrus ICG

Paracentral lobule PCe

Pars opercularis POp

Pars orbitalis POb

Pars triangularis PTr

Posterior cingulate gyrus PCi

Precentral gyrus PrC

Rostral anterior cingulate 
gyrus

RAC

Rostral middle frontal 
gyrus

RMF

Superior frontal gyrus SFr

Occipital (Occ) Cuneus Cun

Lateral occipital gyrus LOc

Lingual gyrus Lin

Pericalcarine cortex Pcc

Parietal (Par) Inferior parietal lobule IPa

Postcentral gyrus PoC

Precuneus Pcn

Superior parietal lobule SPa

Supramarginal gyrus SMa

Subcortical (Sub) Accumbens area Acc

Amygdala Amg

Caudate CaN

Hippocampus Hip

Pallidum Pal

Putamen Put

Thalamus Tha

Temporal (Temp) Banks of superior temporal 
sulcus

BSt

Fusiform gyrus Fus

Insula Ins

Middle temporal gyrus MTe

Parahippocampal gyrus Phc

Superior temporal gyrus STe

Transverse temporal gyrus TrT
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point represents the association between the variable of interest 
and a specific connection. Connection-age association significance 
is on the y-axis, which is the negative log of the p-value, multiplied 
by the sign of the association and a scaling factor that is used to 
ensure that the line representing significance is at the same location 
for both connectivity types. Connections were ordered along the x-
axis according to the anatomical group to which their ROIs belonged 
(see Table 1 for the list of ROIs belonging to each group). Groups 
were ordered by their mean associations with ALPACA. Within each 
group of connections, points were ordered by their association, 
which produces a worm-like shape. This allows easy comparison of 
association strengths and distributions between connectivity types. 
The ordering was performed separately for each type of connec-
tivity, which means that the order of connections likely differs be-
tween connection types. Points that are outside of the dashed lines 

indicate connections with significant associations after correction 
for multiple testing.

3  | RESULTS

Sample characteristics are reported in Table 2. Mean age was 8 years 
and 206 subjects were female. The majority of subjects (372 of 411) 
were right-handed. Mean connectomes across subjects are shown in 
Figure 1 for both MeanTS and ALPACA.

Numerous age-related connections had significant associations 
that survived correction for multiple testing. These are shown in 
connectograms in Figure 2 and are summarized in Table 3. Negative 
associations with age (i.e., weaker connection strength in older 
children) were dominant, including 24 of 48 (50%) connections in 
MeanTS and 66 of 84 (79%) in ALPACA. A large proportion of neg-
ative associations with age were found in subcortical-to-subcortical 
connections, including 18 of 24 (75%) in MeanTS and 38 of 66 (58%) 
in ALPACA. Significant age associations with cortical-to-subcortical 
connections were primarily positive in the MeanTS approach (17 of 
19 connections, 89%) but negative in all 22 of ALPACA’s significant 
associations with age. This suggests that functional connectivity 
between subcortical and cortical regions increases homogenously 
over the entire volume of the involved regions, but decreases focally 
with age. Positive associations involved all lobes except for the oc-
cipital lobes in both approaches and subcortical regions in ALPACA. 
No significant interactions between age and gender were found for 
either ALPACA or MeanTS in any of the connections, once corrected 
for multiple testing. T-tests and Pearson correlations also showed no 
significant relationship between age and IQ, gender and IQ as well as 

TABLE  2 Sample characteristics (N = 411)

General

Age at MRI (years) 8.05 ± 0.99

Gender (M/F) 205/206

Non-verbal IQ 103.77 ± 14.40

Handedness (right/left/unknown) 372/38/1

Ethnicity

Dutch (n) 316

Nonwestern (n) 68

Other western (n) 27

FMRI motion parameters

Average RMS relative (mm) 0.11 ± 0.08

F IGURE  1 Mean connectomes across subjects for MeanTS and ALPACA. Each element in the matrix represents one connection, where 
connection weight is the Fisher r-to-z transformation of the correlation between the corresponding regions on the x- and y-axes

MeanTS ALPACA
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age and mean displacement. There was a significant Pearson correla-
tion between age and mean displacement (−0.15, p < 0.05), however, 
we adjusted for motion as described in the methods section.

The age connectograms were relatively symmetric, suggesting 
that both homogeneous and focal age-related differences occur 
similarly in both hemispheres in the brain. Specific connections 
with symmetric age associations are shown in Figure 2d,e, where 
symmetry is intrahemispheric (i.e., both ROIA,left-to-ROIB,left and 
ROIA,right-to-ROIB,right are significant), interhemispheric (i.e., both 
ROIA,left-to-ROIB,right and ROIA,right-to-ROIB,left are significant), or 
both. The nucleus accumbens played a central role in symmetry in 

negative associations, which were primarily in connections between 
subcortical regions in both network approaches. Positive symmetry 
involved frontal, temporal, parietal, and subcortical regions.

Figure 3 shows the distribution of connection weights grouped 
by lobe using a worm plot (Langen et al., 2015). Most subcortical/
parietal and subcortical/frontal connection associations with age 
were positive in MeanTS but negative in ALPACA. In other words, in 
this group of edges homogenous functional connectivity increases 
with age, however, there are focal areas where functional connec-
tivity decreases with age. There were few connectivity differences 
between gender using both the ALPACA and MeanTS approaches. 

F IGURE  2 Connectograms (van Horn et al., 2012) showing connections with a significant association of (a) MeanTS with age (b) ALPACA 
with age and (c) MeanTS with gender. There were no connections with significant associations with gender and ALPACA, therefore the 
corresponding connectogram is not shown. Brain regions are divided according to location in the brain, including frontal (FRO), temporal 
(TEMP), subcortical (SUB), parietal (PAR), and occipital (OCC). They are arranged in a circle. Regions from the left hemisphere are on the left 
side of the diagram. Significant connections between two regions are plotted as red (positive age associations, or male > female) and blue 
(negative age associations, or female > male) lines, where color intensity indicates relative significance. The opacity of each region indicates 
the relative number of significant associations that each regions has. The age associations had a great deal of symmetry in both networks, 
as shown in (d) for MeanTS and (e) for ALPACA. The connectograms in (d) and (e) show the subset of connections that had intrahemispheric 
(i.e., left-left and right-right connections were both significant) and/or interhemispheric (i.e., left-right and right-left connections were both 
significant) symmetry. These connections are also illustrated more abstractly and simply to the right of the connectograms, where regions 
are represented by circles, connections are represented by lines and the appearance of each line indicates the type of symmetry

MeanTS and gender(c)(a) ALPACA and age(b)MeanTS and age
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MeanTS had a total of five significant associations with gender, in-
cluding three in which connectivity in males was stronger than in 
females (left isthmus cingulate/left lingual, left accumbens/left in-
sula, and left lingual/right hippocampus) and two where females had 
greater connectivity than males (right accumbens/right caudate and 
right accumbens/right inferior parietal cortex). ALPACA did not iden-
tify any significant associations after correction for multiple testing. 
This suggests that gender-related differences in connectivity are ho-
mogeneous across the involved ROIs rather than focal.

4  | DISCUSSION

In this study, we examined age-  and gender differences in func-
tional connectivity by applying two different, but complementary 
approaches to measure functional connectivity. Both connectiv-
ity approaches revealed both common and different patterns of 
connectivity in relation to age, and relatively similar patterns of 
connectivity between boys and girls. Significant associations be-
tween connectivity and age revealed a concentration of negative 

TABLE  3 Location of significant associations

Hemisphere

TotalLeft Right Between

Age ALPACA 30 20 34 84

Positive 8 5 5 18

Fro/Fro 2 1 1 4

Fro/Par 2 0 0 2

Fro/Temp 4 4 4 12

Negative 22 15 29 66

Fro/Par 1 0 0 1

Fro/Sub 3 0 1 4

Fro/Temp 0 1 3 4

Occ/Sub 0 2 1 3

Par/Par 1 0 0 1

Par/Sub 3 2 0 5

Sub/Sub 12 6 20 38

Sub/Temp 2 4 4 10

MeanTS 13 12 23 48

Positive 5 7 12 24

Fro/Par 2 1 0 3

Fro/Sub 2 3 5 10

Fro/Temp 0 2 2 4

Par/Sub 1 1 4 6

Sub/Temp 0 0 1 1

Negative 8 5 11 24

Fro/Par 1 0 1 2

Fro/Sub 1 0 0 1

Occ/Temp 1 0 1 2

Sub/Sub 5 4 9 18

Sub/Temp 0 1 0 1

Gender MeanTS 2 2 1 5

Positive 2 0 1 3

Fro/Occ 1 0 0 1

Occ/Sub 0 0 1 1

Sub/Temp 1 0 0 1

Negative 0 2 0 2

Par/Sub 0 1 0 1

Sub/Sub 0 1 0 1
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associations with age between pairs of subcortical regions and 
positive associations between pairs of cortical regions. The age 
associations generally displayed left-right symmetry. Additionally, 
when connections were grouped anatomically, group-wise shifts 
in associations with age were found. The two different connectiv-
ity indices were overall highly consistent; however, there were a 
number of connections where they diverged, suggesting that in a 
subset of connections, functional connectivity changes with age 
either homogeneously or focally over the involved ROIs, but not 
both.

4.1 | Connectivity increases in the cortex and 
decreases in the subcortex with age

Both methods derived several cortico-cortical connections that 
were positively associated with age. This is consistent with a recent 
study that found that cortico-cortical connectivity increases during 
development in children from seven to 18 years of age (Solé-padullés 
et al., 2015). Our findings expand upon this finding by demonstrating 
that age-related increases in connectivity are present in a narrow 
age-range in young children while utilizing two different methods 

F IGURE  3 Worm plots (Langen et al., 2015) of association of functional measures with age and gender. Connections are split into groups 
based on the location of the associated regions, including frontal (Fro), temporal (Temp), subcortical (Sub), parietal (Par), and occipital (Occ). 
Connections within each group are ordered by association strength, producing worm-like shapes. Order of groups on the x-axis is ordered 
by mean association strength in ALPACA. On the y-axis is the negative log of the p-value, multiplied by the sign of the test, multiplied by a 
scaling factor. Each point outside of the dotted lines represents a significant association of age or gender with a specific connection: Worm 
plots (Langen et al., 2015) of association of functional measures with age and gender. Connections are split into groups based on the location 
of the associated regions, including frontal (Fro), temporal (Temp), subcortical (Sub), parietal (Par), and occipital (Occ). Connections within 
each group are ordered by association strength, producing worm-like shapes. Order of groups on the x-axis is ordered by mean association 
strength in ALPACA. On the y-axis is the negative log of the p-value, multiplied by the sign of the test, multiplied by a scaling factor. Each 
point outside of the dotted lines represents a significant association of age or gender with a specific connection

(a)

(b) Gender versus functional connectivity

Age versus functional connectivity
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for deriving connectivity indices. This increase in connectivity par-
allels an increase in volume of the frontal, temporal, and parietal 
lobes, which has been reported to occur between the 6–10 years 
of age (Lenroot & Giedd, 2006). Thus, the increased volume, which 
may be a result of synaptogenesis and arborization, may also result 
in increasing cross-talk between brain regions. Previous studies have 
found that functional connectivity increases with age in long-range 
connections and decreases in short-range connections (Fair et al., 
2009; Rubia, 2013). This is partially consistent with our observa-
tions, since many of the identified significant positive associations 
were in connections between regions in different lobes and/or hemi-
spheres, and were thus medium to long-range connections. We did, 
however, find a small number of both long-range connections that 
decreased with age and short-range connections that increased with 
age. Thus, maturation of brain connectivity may be region depend-
ent, with many long-range connections increasing with age, whereas 
some show decreases. While the regions with positive associations 
differed between the two connectivity types, both support the no-
tion of generally increasingly distributed networks with age. Our 
observations are particularly interesting because we focused on a 
narrow age range, whereas many previous studies focused on rela-
tively large age ranges (Fair et al., 2009; Rubia, 2013). It is remarkable 
that such striking connectivity differences with age can be observed 
even within a narrow age range in school-age children. This is likely 
a result of the rapid neurodevelopment that occurs during this age 
range. In addition, since movement during MRI scanning shows 
strong age-related differences, with children having greater move-
ment than adolescents and adults, the narrow age range used in our 
study provides greater similarity in movement parameters compared 
to studies with larger age ranges (Fair et al., 2009; Rubia, 2013) and 
thus is less biased by age-related movement artifacts.

Age associations with connections between cortical and sub-
cortical regions differed between network approaches. MeanTS 
had a mix of positive and negative associations, while ALPACA had 
exclusively negative associations with age, adding new insight into 
the nature of previously observed changes in connectivity with 
age. The negative associations in ALPACA suggest that focal con-
nectivity between cortical and subcortical regions decreases with 
age, which is consistent with studies reporting negative associations 
with age in connections between subcortical and cortical regions in 
typical development (Cerliani et al., 2015; Greene et al., 2014; Sato 
et al., 2015; Supekar et al., 2009). However, (Solé-padullés et al., 
2015) found primarily positive as well as some negative age asso-
ciations between cortico-subcortical connections, and (Sato et al., 
2015) found that the thalamus had both positive and negative as-
sociation with age in development. Our results in MeanTS, which is 
an expression of functional connectivity that is homogenous over 
the involved regions, also support the presence of subcortical-to-
cortical connection associations in both directions. Under the rubric 
of specific functional brain networks or cortico-subcortical feed-
back loops associated with neurodevelopment (i.e., the cortico-
cerebellar-thalamic-cortical circuit [CCTCC]; Andreasen & Pierson, 
2008; Ullsperger, Danielmeier, & Jocham, 2014), the presence of 

both positive and negative associations between cortical and sub-
cortical regions may be expected. Maturing feedback loops involv-
ing similar functions would show increasing connectivity with age, 
whereas those involved in different functions would show less age-
related functional connectivity. Significant differences of cortico-
subcortical functional connectivity with age are also parallel to 
previously observed increases in size of the frontal, temporal and 
parietal lobes as well as some subcortical regions (Lenroot & Giedd, 
2006).

While there is a wealth of developmental studies examining 
cortical-to-cortical connections, and to a lesser extent subcortical-
to-cortical connections, there is a gap in the literature regarding age-
related differences in the connectivity between different subcortical 
structures. In this study, we found that all significant associations of 
connectivity between subcortical regions with age were negative for 
both network types. Our findings between subcortical structures 
may reflect networks transforming from local to distributed during 
development, as was shown by (Fair et al., 2009). However, their 
study focused on cortical and cerebellar regions, and did not report 
on subcortical/subcortical connectivity.

Structural MRI studies of subcortical structures examined how 
volumes of subcortical regions change over time (Lenroot & Giedd, 
2006). These changes include an inverted U-shaped pattern in the 
volume of the caudate with peaks at 7.5 and 10.0 years of age in 
females and males, respectively; an increase in hippocampal size in 
males only and an increase in the size of the amygdala in girls only. 
The amygdala, hippocampus and caudate were involved in subcor-
tical connections with negative associations with age, which was 
true for both networks for the amygdala and hippocampus, and only 
for ALPACA in the caudate. As these regions have been shown to 
increase in volume during childhood and subsequently decrease 
during adolescence (Sowell, Thompson, & Toga, 2004), their commu-
nications with other subcortical regions likely also change during de-
velopment. It is thus possible that in the presence of later maturing 
cortical structures in young children (i.e., prefrontal cortex; Lenroot 
& Giedd, 2006; Mills, Goddings, Clasen, Giedd, & Blakemore, 2014), 
subcortical structures rely on within-system connectivity. As the 
cortex matures and its connections to the subcortex strengthen 
(Cummings, 1993), this previous subcortical reliance on highly inte-
grative connectivity may be relaxed. Such an imbalance in timing of 
development has been previously proposed for cortical/limbic con-
nectivity (Casey, Jones, & Hare, 2008; Heller, Cohen, Dreyfuss, & 
Casey, 2016). Given the importance of various subcortical structures 
and their cortical connections with different psychiatric disorders 
(e.g., Cortico-cerebellar-thalamic-cortical loop in Schizophrenia, 
caudate motor in ADHD, thalamus/basal ganglia/primary sensory 
networks; Cerliani et al., 2015), having a better understanding of 
differences within and between cortical and subcortical regions is 
a crucial foundation for future efforts studying connectivity differ-
ences related to psychopathology.

An interesting finding in this study was inter-  and intrahemi-
spheric symmetry in age associations. Symmetry in the negative as-
sociations in both network types was primarily between subcortical 
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regions with the nucleus accumbens playing a central role, whereas 
positive symmetry involved frontal, temporal, parietal, and subcorti-
cal regions. This suggests that many bilateral connections within and 
between hemispheres are developing simultaneously. The fact that 
many subcortical connections with the accumbens area had nega-
tive associations with age in both network types might be related 
to development of the reward center of the brain. The accumbens 
has been linked to risk-taking behavior in adolescents (Galvan et al., 
2006), but previous studies have not directly investigated the devel-
opment of subcortical connection to the amygdala in children. Our 
results suggest that activity is increasingly directed by cortical re-
gions rather than subcortical regions. Asymmetry in brain connectiv-
ity has previously been observed in lateralization studies (Agcaoglu, 
Miller, Mayer, Hugdahl, & Calhoun, 2015; Di, Kim, Chen, & Biswal, 
2014; Holland et al., 2007). Adolescent and adult brains are highly 
lateral across several resting state networks, with several brain re-
gions showing a decrease in lateralization with age (Agcaoglu et al., 
2015). In children, language networks become increasingly left-
lateralized throughout development (Groen, Whitehouse, Badcock, 
& Bishop, 2012; Holland et al., 2007), whereas visuospatial networks 
become right-lateralized (Groen et al., 2012). Although lateralization 
of the brain may be related to asymmetric association of functional 
connectivity with age, this relationship has not been studied directly, 
nor can it be definitively assumed. Lateralization can increase even 
if the association with age is significant on both sides of the brain. 
While symmetry in functional connectivity has been widely stud-
ied, the symmetry of associations with functional connectivity have 
not. Examination of association symmetry could be informative in 
future studies. For example, individual deviations from the symme-
try pattern found in typical development could be used as a marker 
of psychopathology.

4.2 | Sexual dimorphism

Five connections had significant associations surviving correction 
of multiple testing of MeanTS with gender. ALPACA did not have 
any associations with gender. Together these results suggest that 
gender-related differences in functional connectivity are likely more 
uniform across the involved regions, rather than being localized to 
spatially focal peaks. These results could alternately suggest that 
MeanTS is a more robust measure of sexual dimorphism. Previous 
studies of gender-related differences in resting-state functional con-
nectivity are sparse in this age range. A recent study did not find 
any gender differences in the age range of 7–12 (Solé-padullés et al., 
2015). Additionally, diffusion tensor MRI study in children aged six 
to ten found no significant gender-related differences in measures of 
white matter integrity (Muftuler et al., 2012). Both studies support 
our observation of few connectivity differences between gender in 
this age range.

The lack of observed gender differences in functional connec-
tivity during development in both our study and previous studies 
are surprising given that studies of structural connectivity have 
found gender differences in relation to cognition and/or intelligence 

in children and adolescents. Several previous studies have found 
gender differences in structural connectivity (Hänggi et al., 2010; 
Schmithorst, 2009; Simmonds, Hallquist, Asato, & Luna, 2014), how-
ever, a recent DTI study in the current cohort did not show gen-
der differences (Muetzel et al., 2015). Gender differences have also 
previously been observed in neuroanatomical studies. For example, 
longitudinal structural MRI studies have shown gender differences 
in grey matter volume in the frontal, parietal, and temporal lobes, as 
well as in the caudate, amygdale, and hippocampus from childhood 
throughout adolescence (Lenroot & Giedd, 2006). In this study, all 
of these regions with the exception of the amygdala had connec-
tions with significant associations with gender. Given that previous 
work present conflicting views on gender differences in connectivity 
and related grey matter volumes, and since our study found a small 
number of connections with gender differences in only one of the 
two functional networks studied, it seems that gender differences 
in functional connectivity are subtle and limited in typically develop-
ing children in this age range. Measureable gender differences in the 
brain may emerge or become unmasked with development, with dif-
ferences between boys and girls may become more apparent during 
adolescence and young adulthood.

4.3 | Defining functional connectivity by peak 
activation versus over an entire region

As described above, both network types were generally in agree-
ment with each other and with the existing literature. In some spe-
cific connections, some differences were apparent across method 
with respect to associations in specific connections. In the case of 
such differences, this suggests that the nature of the development 
of functional connectivity is not the same for all regions. For exam-
ple, MeanTS did not have significant associations with age in fronto-
frontal connections, whereas ALPACA’s positive associations with 
age were exclusively found in fronto-frontal, fronto-temporal, and 
fronto-parietal connections. This is in line with findings of an ear-
lier study that suggested that cortical connections become increas-
ingly focal with age (Durston et al., 2006). This is in contrast with 
age associations with the posterior cingulate, which were positive in 
MeanTS but not ALPACA. This suggests that developmental changes 
in posterior cingulate connectivity are distributed across the entire 
structure rather than localized in a focal region. Previous studies 
have shown that connectivity in the default mode network changes 
during development, including connections involving the posterior 
cingulate (Fair et al., 2008; Supekar et al., 2010).

Increasingly diffuse connectivity with age was also found in 
cortical-to-subcortical connections, which were primarily positive in 
MeanTS but exclusively negative in ALPACA. This thus suggests a 
focal to diffuse trajectory with age. Such a trajectory in subcortical-
to-subcortical connections was not found since their age associa-
tions were exclusively negative in both network types.

It is interesting to consider the differences between the two net-
work types in the context of the underlying neuronal architecture. 
If connectivity with grey matter is more diffuse, with connecting 
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neurons covering a more extensive surface of an ROI, then a more 
diffuse representation, such as MeanTS, would better capture 
changes in functional connectivity (e.g., a “shared pathway”). On the 
other hand, if axonal pathways between two regions start and end 
in focal gray matter locations, then a focal representation of func-
tional connectivity, such as ALPACA, may target critical regions of 
connectivity.

There are additional factors that must be kept in mind inter-
preting results involving ALPACA. For example, ALPACA’s focal ap-
proach may be more flexible in identifying the location of activation 
because it does not average over entire regions, which can blur the 
signal. This may be advantageous in relation to both structural and 
functional variability because it may not always be sensible to as-
sume the same spatial activation patterns across individuals. On the 
other hand, ALPACA does not guarantee that the activation detected 
across individuals corresponds to the same focal connection. For ex-
ample, it may be that a large region has more than one focal peak in 
connectivity. ALPACA may thus choose one peak for some subjects 
and another for others, in which case comparison across individuals 
would not involve the same connection. Additionally, in some cases, 
weaker functional connectivity has been related to some forms of 
psychopathology (e.g., autism [Ha, Sohn, Kim, Sim, & Cheon, 2015] 
and depression [Hermesdorf et al., 2015]). In this situation, finding 
the local maximum may not be desirable in the context of better ex-
plaining the neurobiological underpinnings of psychopathology or 
identifying novel biomarkers because the local maxima may not nec-
essarily reflect the reduced connectivity across the involved regions. 
Given the benefits and drawbacks and the underlying assumptions 
of each network type, using both ALPACA and MeanTS simultane-
ously in future studies may result in greater insights into different 
aspects of functional connectivity and make inferences of whether a 
given connection has a diffuse or focal connectivity pattern.

4.4 | Strengths and limitations

While most studies on developmental functional connectivity 
focus on broad age ranges with moderate sample sizes (Rubia, 
2013), many of which used task-based fMRI rather than resting 
state fMRI, our study focused on a narrow age range and benefited 
from increased statistical power due to the large cohort. The chil-
dren included in this study were sampled from a population-based 
cohort and were representative of the general population, which 
helped to mitigate the common issue of selection bias of children 
with higher than average IQ or greater socioeconomic status. An 
additional strength of this study is that, by keeping our analysis 
in native space, our results were not influenced by intersubject 
registration, which has frequently been used in previous studies 
and has been shown to blur cortical areas (Fischl, Sereno, Tootell, 
& Dale, 1999; White et al., 2001). This study also effectively used 
“brain-wide” visualizations to display large amounts of connec-
tomic information, namely in the connectograms and worm plots. 
In addition, we present both novel findings as well as replication 
of observations from earlier studies, the latter being important 

in neuroscience, which is a field plagued by many underpowered 
studies that do not replicate (Nichols et al., 2017; Open Science 
Collaboration, 2015).

As previously mentioned, we used a FreeSurfer anatomical seg-
mentation to define our regions of interest. Anatomical segmen-
tations have also been used in several previous studies (Cammoun 
et al., 2012; Fornito, Yoon, Zalesky, Bullmore, & Carter, 2011; 
Tadayonnejad, Yang, Kumar, & Ajilore, 2014). This approach bene-
fits from a subject-specific segmentation in native space, which does 
not require intersubject registrations. Studies that include intersub-
ject registrations are vulnerable to misregistration (Di Martino et al., 
2014). This approach may, however, fall short in the event that ROIs 
are not functionally specific or homogeneous. Choice of segmenta-
tion can affect the results of connectomics studies (de Reus & van 
den Heuvel, 2013). Functionally defined ROIs can be obtained using 
fMRI. Existing methods define regions to be either nonoverlapping 
(Blumensath et al., 2013; Shen, Tokoglu, Papademetris, & Constable, 
2013; Yeo et al., 2011) or overlapping (Beckmann, 2012; van den 
Heuvel & Hulshoff Pol, 2010; Smith et al., 2012, 2013). For example, 
(Yeo et al., 2011) used functional MRI to define a cortical segmenta-
tion that maximized functional specialization within regions across 
subjects. The borders of the resulting functional ROIs were signifi-
cantly different from the anatomically defined ROIs used in this 
study. Thus, a functional ROI may intersect with several anatomical 
ROIs. Additionally, an anatomical ROI could be composed of several 
functionally distinct regions or may be part of a larger functional re-
gion. Because MeanTS averages signals over ROIs, some of which 
are quite large, imprecise boundaries would likely be less of a prob-
lem than they would be for ALPACA. In the event that a given region 
contains several functionally distinct subregions, ALPACA runs the 
risk of choosing different subregions across subjects for the same 
connection. However, in the case of large anatomical regions, where 
only a part of the ROI is active, the MeanTS approach would average 
over the entire region, which would not reflect activity in the active 
region. This may result in underestimated functional connectivity 
between regions. The ALPACA approach would circumvent this by 
choosing the highest activation and the number of voxels involved in 
calculating the correlation coefficient are always the same.

In order to reduce the possibility of spurious correlations we 
applied a median filter. This approach runs the risk that connec-
tivity between highly focal voxels may be diminished via the spa-
tial smoothing. Thus, we chose to smooth only using the 28 voxels 
surrounding the voxel of interest. Given a voxel dimension of 
3.4 mm × 3.4 mm × 4.0 mm, the total size of the smoothed voxel in-
cluding the median filter is 1,248 mm3, which is a reasonably large 
smoothing kernel for native space and should help reduce chance 
findings due to noise spikes within the data. We have shown pre-
viously that not only structural variability, but also functional vari-
ability contributes to differences in the anatomic locations of fMRI 
signals (White et al., 2001), and thus specific voxels may not be spu-
rious correlations, but rather the higher intensity may be the result 
of a true underlying focal neural signal that differs spatially between 
participants.
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We did not evaluate the variability in the spatial location of the 
ALPACA-derived peaks. Larger brain regions, such as many of the 
FreeSurfer-defined cortical regions, may have multiple peaks where 
the relative magnitude of peaks may vary between individuals, 
which could be interpreted as greater functional heterogeneity. The 
subcortical regions, being smaller than many of the cortical regions, 
are less likely to have multiple peaks and thus this likely explains the 
similarity in findings between the ALPACA and MeanTS approaches. 
Future studies should assess the heterogeneity in the number and 
locations of peaks within FreeSurfer regions within the context of 
development.

This study measured alertness by asking subjects to report 
whether they fell asleep in the scanner. While none of the children 
reported falling asleep, we did not measure EEG activity and thus it 
is possible that some of the children may have slept during the scans. 
This could have an effect on the results of this study.

Functional connectivity studies, and particularly those involv-
ing pediatric populations, are frequently impacted by motion arti-
facts, which can erroneously increase long-range connectivity and 
decrease short-range connectivity (Fornito, Bullmore, & Zalesky, 
2017; Di Martino et al., 2014; Power et al., 2014) Given that younger 
children tend to move more than older children, this can have an 
impact on developmental studies. In this study, we corrected for mo-
tion using the “scrubbing” method (Power et al., 2012, 2013), where 
corrupted volumes are removed. While this method significantly 
reduces the effect of motion (Power et al., 2014), it is but one of 
many strategies (Di Martino et al., 2014). Among the drawbacks of 
the scrubbing method are the loss of data within subjects, and the 
unequal degrees of freedom across subjects (Power et al., 2014).

Another issue relevant to connectome-wide association studies 
is multiple testing correction. This study calculated the “number of 
effective tests” for each network type based on the covariance in 
the data, and used this number to adjust the significance threshold. 
Some of the differences in associations between the two networks 
investigated in this study could be simply due to the threshold cho-
sen for each network. This is one of many similar methods com-
monly used in genetics studies to approximate permutation testing 
(Sham & Purcell, 2014). Permutation testing has been used pre-
viously in connectomics (Ingalhalikar et al., 2014), but remains a 
computationally expensive method of multiple testing correction. 
Another option is to reduce the number of tests by using measures 
such as the network-based statistic (Zalesky, Fornito, & Bullmore, 
2010), or to consider graph theoretical measures that produce 
node-  or graph-level values (Kaiser, 2011; Rubinov & Sporns, 
2010). This approach has been used in several studies (Betzel et al., 
2014; Crossley et al., 2014; Fornito et al., 2011; Fornito, Zalesky, 
Pantelis, & Bullmore, 2012; Zhou, Gennatas, Kramer, Miller, & 
Seeley, 2012), however, it fundamentally shifts the research focus 
from identification of relevant connections to the interpretation of 
measures that often do not have a known relation to neuro-biology 
(Smith, 2012). Lastly, this study included individuals from the gen-
eral population, rather than solely recruiting “typically developing” 
children from the community. We utilized a common behavioral 

and emotional problem inventory to exclude children with high lev-
els of behavior problems to maximize comparability of these data 
with the existing literature. While most behavioral and emotional 
problems are robustly measured by this parent-report instrument, 
the children themselves may arguably be better informants for 
some types of problem behavior (e.g., internalizing vs. externaliz-
ing problems). However, even with some misclassification of prob-
lem behavior, the population-based nature of the present sample 
is highly useful in that it greatly increases the generalizability of 
findings across all individuals of the population, rather than only 
the “typically developing” individuals.

5  | CONCLUSION

The current study provides both replication and novel findings for 
age-related maturation of intrinsic connectivity. Replication of find-
ings is noteworthy given our large sample size and narrow age range, 
coupled with critique regarding less than optimal reproducibility and 
replication in the field of neuroimaging. Cortico-cortico connectivity 
was found to increase with age, while connectivity between subcor-
tical regions decreased with age. Some cortico-cortical connections 
became increasingly focal with age, whereas other cortico-cortical 
and most cortico-subcortical connections became more diffuse with 
age. Additionally, we demonstrate the utility of native-space analy-
ses of connectivity and offer examples of how the data can be effi-
ciently and intuitively displayed. Future studies should explore using 
different anatomical or functional parcellations to determine to what 
extent the connectivity patterns are influenced by ROI boundaries.
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