199 research outputs found

    Long-term operation of a multi-channel cosmic muon system based on scintillation counters with MRS APD light readout

    Get PDF
    A Cosmic Ray Test Facility (CRTF) is the first large-scale implementation of a scintillation triggering system based on a new scintillation technique known as START. In START, the scintillation light is collected and transported by WLS optical fibers, while light detection is performed by pairs of avalanche photodiodes with the Metal-Resistor-Semiconductor structure operated in the Geiger mode (MRS APD). START delivers 100% efficiency of cosmic muon detection, while its intrinsic noise level is less than 10^{-2} Hz. CRTF, consisting of 160 START channels, has been continuously operated by the ALICE TOF collaboration for more than 25 000 hours, and has demonstrated a high level of stability. Fewer than 10% of MRS APDs had to be replaced during this period.Comment: Proceedings of NDIP-2008. 8 pages, 8 figures, 6 reference

    Control of chronic excessive alcohol drinking by genetic manipulation of the Edinger-Westphal nucleus urocortin-1 neuropeptide system

    No full text
    Midbrain neurons of the centrally projecting Edinger-Westphal nucleus (EWcp) are activated by alcohol, and enriched with stress-responsive neuropeptide modulators (including the paralog of corticotropin-releasing factor, urocortin-1). Evidence suggests that EWcp neurons promote behavioral processes for alcohol-seeking and consumption, but a definitive role for these cells remains elusive. Here we combined targeted viral manipulations and gene array profiling of EWcp neurons with mass behavioral phenotyping in C57BL/6 J mice to directly define the links between EWcp-specific urocortin-1 expression and voluntary binge alcohol intake, demonstrating a specific importance for EWcp urocortin-1 activity in escalation of alcohol intake

    Cross-Correlation Earthquake Precursors in the Hydrogeochemical and Geoacoustic Signals for the Kamchatka Peninsula

    Full text link
    We propose a new type of earthquake precursor based on the analysis of correlation dynamics between geophysical signals of different nature. The precursor is found using a two-parameter cross-correlation function introduced within the framework of flicker-noise spectroscopy, a general statistical physics approach to the analysis of time series. We consider an example of cross-correlation analysis for water salinity time series, an integral characteristic of the chemical composition of groundwater, and geoacoustic emissions recorded at the G-1 borehole on the Kamchatka peninsula in the time frame from 2001 to 2003, which is characterized by a sequence of three groups of significant seismic events. We found that cross-correlation precursors took place 27, 31, and 35 days ahead of the strongest earthquakes for each group of seismic events, respectively. At the same time, precursory anomalies in the signals themselves were observed only in the geoacoustic emissions for one group of earthquakes.Comment: 21 pages, 5 figures, 1 table; to be published in "Acta Geophysica". arXiv admin note: substantial text overlap with arXiv:1101.147

    Urocortin-1 within the Centrally-Projecting Edinger-Westphal Nucleus Is Critical for Ethanol Preference

    Get PDF
    Converging lines of evidence point to the involvement of neurons of the centrally projecting Edinger-Westphal nucleus (EWcp) containing the neuropeptide Urocortin-1 (Ucn1) in excessive ethanol (EtOH) intake and EtOH sensitivity. Here, we expanded these previous findings by using a continuous-access, two-bottle choice drinking paradigm (3%, 6%, and 10% EtOH vs. tap water) to compare EtOH intake and EtOH preference in Ucn1 genetic knockout (KO) and wild-type (WT) mice. Based on previous studies demonstrating that electrolytic lesion of the EWcp attenuated EtOH intake and preference in high-drinking C57BL/6J mice, we also set out to determine whether EWcp lesion would differentially alter EtOH consumption in Ucn1 KO and WT mice. Finally, we implemented well-established place conditioning procedures in KO and WT mice to determine whether Ucn1 and the corticotropin-releasing factor type-2 receptor (CRF-R2) were involved in the rewarding and aversive effects of EtOH (2 g/kg, i.p.). Results from these studies revealed that (1) genetic deletion of Ucn1 dampened EtOH preference only in mice with an intact EWcp, but not in mice that received lesion of the EWcp, (2) lesion of the EWcp dampened EtOH intake in Ucn1 KO and WT mice, but dampened EtOH preference only in WT mice expressing Ucn1, and (3) genetic deletion of Ucn1 or CRF-R2 abolished the conditioned rewarding effects of EtOH, but deletion of Ucn1 had no effect on the conditioned aversive effects of EtOH. The current findings provide strong support for the hypothesis that EWcp-Ucn1 neurons play an important role in EtOH intake, preference, and reward

    Universal Oligonucleotide Microarray for Sub-Typing of Influenza A Virus

    Get PDF
    A universal microchip was developed for genotyping Influenza A viruses. It contains two sets of oligonucleotide probes allowing viruses to be classified by the subtypes of hemagglutinin (H1–H13, H15, H16) and neuraminidase (N1–N9). Additional sets of probes are used to detect H1N1 swine influenza viruses. Selection of probes was done in two steps. Initially, amino acid sequences specific to each subtype were identified, and then the most specific and representative oligonucleotide probes were selected. Overall, between 19 and 24 probes were used to identify each subtype of hemagglutinin (HA) and neuraminidase (NA). Genotyping included preparation of fluorescently labeled PCR amplicons of influenza virus cDNA and their hybridization to microarrays of specific oligonucleotide probes. Out of 40 samples tested, 36 unambiguously identified HA and NA subtypes of Influenza A virus

    The Role of Early Life Experience and Species Differences in Alcohol Intake in Microtine Rodents

    Get PDF
    Social relationships have important effects on alcohol drinking. There are conflicting reports, however, about whether early-life family structure plays an important role in moderating alcohol use in humans. We have previously modeled social facilitation of alcohol drinking in peers in socially monogamous prairie voles. We have also modeled the effects of family structure on the development of adult social and emotional behaviors. Here we assessed whether alcohol intake would differ in prairie voles reared by both parents compared to those reared by a single mother. We also assessed whether meadow voles, a closely related species that do not form lasting reproductive partnerships, would differ in alcohol drinking or in the effect of social influence on drinking. Prairie voles were reared either bi-parentally (BP) or by a single mother (SM). BP- and SM-reared adult prairie voles and BP-reared adult meadow voles were given limited access to a choice between alcohol (10%) and water over four days and assessed for drinking behavior in social and non-social drinking environments. While alcohol preference was not different between species, meadow voles drank significantly lower doses than prairie voles. Meadow voles also had significantly higher blood ethanol concentrations than prairie voles after receiving the same dose, suggesting differences in ethanol metabolism. Both species, regardless of rearing condition, consumed more alcohol in the social drinking condition than the non-social condition. Early life family structure did not significantly affect any measure. Greater drinking in the social condition indicates that alcohol intake is influenced similarly in both species by the presence of a peer. While the ability of prairie voles to model humans may be limited, the lack of differences in alcohol drinking in BP- and SM-reared prairie voles lends biological support to human studies demonstrating no effect of single-parenting on alcohol abuse

    Study of QGP signatures with the phi->K+K- signal in Pb-Pb ALICE events

    Full text link
    The phi->K+K- decay channel in Pb-Pb collisions at LHC is studied through a full simulation of the ALICE detector. The study focuses on possible signatures in this channel of quark-gluon plasma (QGP) formation. On a basis of 10^6 collisions at high centrality some proposed QGP signatures are clearly visible both in K+K- invariant mass and transverse mass distributions. The high significance of this observation appears to reside heavily on the use of the TOF (Time Of Flight) system of ALICE in addition to its central tracking detectors.Comment: 9 pages, 7 figures, to appear in EPJ

    Treatment- and Population-Dependent Activity Patterns of Behavioral and Expression QTLs

    Get PDF
    Genetic control of gene expression and higher-order phenotypes is almost invariably dependent on environment and experimental conditions. We use two families of recombinant inbred strains of mice (LXS and BXD) to study treatment- and genotype-dependent control of hippocampal gene expression and behavioral phenotypes. We analyzed responses to all combinations of two experimental perturbations, ethanol and restraint stress, in both families, allowing for comparisons across 8 combinations of treatment and population. We introduce the concept of QTL activity patterns to characterize how associations between genomic loci and traits vary across treatments. We identified several significant behavioral QTLs and many expression QTLs (eQTLs). The behavioral QTLs are highly dependent on treatment and population. We classified eQTLs into three groups: cis-eQTLs (expression variation that maps to within 5 Mb of the cognate gene), syntenic trans-eQTLs (the gene and the QTL are on the same chromosome but not within 5 Mb), and non-syntenic trans-eQTLs (the gene and the QTL are on different chromosomes). We found that most non-syntenic trans-eQTLs were treatment-specific whereas both classes of syntenic eQTLs were more conserved across treatments. We also found there was a correlation between regions along the genome enriched for eQTLs and SNPs that were conserved across the LXS and BXD families. Genes with eQTLs that co-localized with the behavioral QTLs and displayed similar QTL activity patterns were identified as potential candidate genes associated with the phenotypes, yielding identification of novel genes as well as genes that have been previously associated with responses to ethanol

    “I have no clue what I drunk last night” Using Smartphone technology to compare in-vivo and retrospective self-reports of alcohol consumption.

    Get PDF
    This research compared real-time measurements of alcohol consumption with retrospective accounts of alcohol consumption to examine possible discrepancies between, and contextual influences on, the different accounts.Building on previous investigations, a specifically designed Smartphone technology was utilized to measure alcohol consumption and contextual influences in de facto real-time. Real-time data (a total of 10,560 data points relating to type and number of drinks and current social / environmental context) were compared with daily and weekly retrospective accounts of alcohol consumption.Participants reported consuming more alcoholic drinks during real-time assessment than retrospectively. For daily accounts a higher number of drinks consumed in real-time was related to a higher discrepancy between real-time and retrospective accounts. This effect was found across all drink types but was not shaped by social and environmental contexts. Higher in-vivo alcohol consumption appeared to be related to a higher discrepancy in retrospectively reported weekly consumption for alcohol beverage types other than wine. When including contextual factors into the statistical models, being with two or more friends (as opposed to being alone) decreased the discrepancy between real-time and retrospective reports, whilst being in the pub (relative to being at home) was associated with greater discrepancies.Overall, retrospective accounts may underestimate the amount of actual, real-time alcohol consumed. Increased consumption may also exacerbate differences between real-time and retrospective accounts. Nonetheless, this is not a global effect as environmental and social contexts interact with the type of alcohol consumed and the time frame given for reporting (weekly vs. daily retrospective). A degree of caution therefore appears warranted with regards to the use of retrospective self-report methods of recording alcohol consumption. Whilst real-time sampling is unlikely to be completely error free, it may be better able to account for social and environmental influences on self-reported consumption

    Post-training ethanol disrupts trace conditioned fear in rats: Effects of timing of ethanol, dose and trace interval duration

    Get PDF
    Ethanol has complex effects on memory performance, although hippocampus-dependent memory may be especially vulnerable to disruption by acute ethanol intoxication occurring during or shortly after a training episode. In the present experiments, the effects of post-training ethanol on delay and trace fear conditioning were examined in adolescent rats. In Experiment 1, 30-day-old Sprague-Dawley rats were given delay or trace conditioning trials in which a 10 s flashing light CS was paired with a 0.5 mA shock US. For trace groups, the trace interval was 10 s. On days 31-33, animals were administered ethanol once daily (0.0 or 2.5 g/kg via intragastric intubation), and on day 34 animals were tested for CS-elicited freezing. Results showed that post-training ethanol affected the expression of trace, but had no effect on delay conditioned fear. Experiment 2 revealed that this effect was dose-dependent; doses lower than 2.5 g/kg were without effect. Experiment 3 evaluated whether proximity of ethanol to the time of training or testing was critical. Results show that ethanol administration beginning 24 h after training was more detrimental to trace conditioned freezing than administration that was delayed by 48 h. Finally, in Experiment 4 animals were trained with one of three different trace intervals: 1, 3 or 10 s. Results indicate that post-training administration of 2.5 g/kg ethanol disrupted trace conditioned fear in subjects trained with a 10 s, but not with a I or 3 s, trace interval. Collectively the results suggest that ethanol administration impairs post-acquisition memory processing of hippocampus-dependent trace fear conditioning. (C) 2008 Elsevier Inc. All rights reserved
    corecore