75 research outputs found

    Phenotyping Key Fruit Quality Traits in Olive Using RGB Images and Back Propagation Neural Networks

    Get PDF
    To predict oil and phenol concentrations in olive fruit, the combination of back propagation neural networks (BPNNs) and contact-less plant phenotyping techniques was employed to retrieve RGB image-based digital proxies of oil and phenol concentrations. Fruits of cultivars (×3) differing in ripening time were sampled (∌10-day interval, ×2 years), pictured and analyzed for phenol and oil concentrations. Prior to this, fruit samples were pictured and images were segmented to extract the red (R), green (G), and blue (B) mean pixel values that were rearranged in 35 RGB-based colorimetric indexes. Three BPNNs were designed using as input variables (a) the original 35 RGB indexes, (b) the scores of principal components after a principal component analysis (PCA) pre-processing of those indexes, and (c) a reduced number (28) of the RGB indexes achieved after a sparse PCA. The results show that the predictions reached the highest mean R2 values ranging from 0.87 to 0.95 (oil) and from 0.81 to 0.90 (phenols) across the BPNNs. In addition to the R2, other performance metrics were calculated (root mean squared error and mean absolute error) and combined into a general performance indicator (GPI). The resulting rank of the GPI suggests that a BPNN with a specific topology might be designed for cultivars grouped according to their ripening period. The present study documented that an RGB-based image phenotyping can effectively predict key quality traits in olive fruit supporting the developing olive sector within a digital agriculture domain

    Preliminary image-based appraisal of starch in one-year-old grapevine shoots

    Get PDF
    Determination of starch concentration in grapevine woody tissues is pivotal to optimize some vineyard management techniques. Analytical assays represent the most reliable approach but nevertheless they are time-consuming. This study reports preliminary results on using imaging to estimate starch concentration in woody tissues stained with the Lugol's solution indicator in Vitis vinifera L.. One-year-old shoots (cv 'Primitivo') were sampled in winter time and forced to sprout inducing a starch depletion. The measured starch ranged from approx. 0.1 to 14.4 % (DW). Parallel image-based and analytical starch concentrations data (n=42) revealed that R (red), G (green) and B (blue) color channels were highly predictive across three phenological stages (r =-0.92), rising the imaging technique proposed as a promising tool to estimate the starch content

    Image-based sensing of salt stress in grapevine

    Get PDF
    Grapevine is among the most economically important crops suffering environmental constraints, including drought and salt stress. Although imaging is increasingly used to detect abiotic stress in agriculture, image-based phenotyping in grapevine still needs optimisation. This study presents the RGB-(red, green, blue)-based phenotyping of the early stage of salt stress response in potted grapevine (Aleatico/SO4) irrigated with saline water (100 mM NaCl) for 9 days in contrast with vines irrigated with fresh water. The response was measured using stomatal conductance (gs), net photosynthetic rate (A), transpiration (E), maximum potential photosynthetic efficiency (Fv/Fm), stem water potential (SWP) concurrently with RGB imaging via a robotised platform. The image-based phenotyping of salt-stressed vines employed two sets of measurements: (i) the pixel fraction of specific colour bands (Yellow, Green, Brown and Dark Green) and (ii) the mean pixel value of R, G and B and other RGB-based colorimetric indexes. Results show that the responses of gs, A, E, Fv/Fm were closely related to increasing soil electrical conductivity (EC) and that imaging could detect the EC threshold of approx. 4 dS m-1 causing a 60 % decrease in these physiological traits compared to the pre-stress level. The SWP declined to about -0.7 MPa at the end of the experiment. The change of the relative pixel fraction of Dark Green to increasing EC has been analysed within a dose-response context, showing that a decrease of 1 % of the Dark Green colour band corresponded to the 4 dS m-1 EC threshold. This study also examined the use of the mean pixel value of the R, G and B channels as proxies of EC along with new RGB-based indexes resulting from the rearrangement of original R, G and B mean pixel values. Results show the suitability of the mean pixel value of R and Coloration Index [(R-B)/R] to serve as predictors of EC (R2 >= 0.80)

    Climate change impacts on plant phenology: Grapevine (vitis vinifera) bud break in wintertime in southern italy

    Get PDF
    The effects of global warming on plants are not limited to the exacerbation of summer stresses; they could also induce dormancy dysfunctions. In January 2020, a bud break was observed in an old poly-varietal vineyard. Meteorological data elaboration of the 1951–2020 period confirmed the general climatic warming of the area and highlighted the particular high temperatures of the last winter. Phenological records appeared to be significantly correlated to wood hydration and starch reserve consumption, demonstrating a systemic response of the plant to the warm conditions. The eight cultivars, identified by single-nucleotide polymorphism (SNP) profiles and ampelographic description, grown in this vineyard showed different behaviors. Among them, the neglected Sprino, Baresana, Bianco Palmento, and Uva Gerusalemme, as well as the interspecific hybrid Seyve Villard 12.375, appeared to be the most interesting. Among the adaptation strategies to climate changes, the cultivar selection should be considered a priority, as it reduces the inputs required for the plant management over the entire life cycle of the vineyard. Hot Mediterranean areas, such as Salento, are a battlefront against the climate change impacts, and, thus, they represent a precious source of biodiversity for viticulture

    Description of the Vitis vinifera L. phenotypic variability in eno-carpological traits by a Euro-Asiatic collaborative network among ampelographic collections

    Get PDF
    The grapevine intra-specific variability captured an increasing interest during the last decades, as demonstrated by the number of recently funded European projects focused on the grapevine biodiversity preservation. However, nowadays, crop plants are mainly characterized by genotyping methods. The present work summarizes the phenotype data collected among 20 ampelographic collections spread in 15 countries, covering mostly of the viticultural areas in the Euro-Asiatic range: from Portugal to Armenia and from Cyprus to Luxembourg. Together with agro-climatic characterization of the experimental site, in two years, about 2400 accessions were described, following a common experimental protocol mainly focused on the carpological and oenological traits, obtaining a general overview of the distribution of the considered phenotypic traits in the cultivated Vitis vinifera species. The most replicated cultivars were selected and, for the subset of these reference cultivars, their behavior in the different environmental conditions over sites and years was described by ANOVA methods

    Description of the vitis vinifera L. Phenotypic variability in eno-carpological traits by a Euro-Asiatic collaborative network among ampelographic collections

    Get PDF
    The grapevine intra-specific variability captured an increasing interest during the last decades, as demonstrated by the number of recently funded European projects focused on the grapevine biodiversity preservation. However, nowadays, crop plants are mainly characterized by genotyping methods. The present work summarizes the phenotype data collected among 20 ampelographic collections spread over 15 countries, covering most of the viticultural areas in the Euro-Asiatic region: from Portugal to Armenia and from Cyprus to Luxembourg. Together with agro-climatic characterization of the experimental site, over two years about 2,400 accessions were described. A common experimental protocol mainly focused on the carpological and oe-nological traits was followed, obtaining a general overview of the distribution of the considered phenotypic traits in the cultivated Vitis vinifera species. The most replicated cultivars were selected and, for the subset of these reference cultivars, their behavior in the different environmental conditions over sites and years was described by ANOVA methods

    Unraveling the performance of dispersion-corrected functionals for the accurate description of weakly bound natural polyphenols

    Get PDF
    Long-range non-covalent interactions play a key role in the chemistry of natural polyphenols. We have previously proposed a description of supramolecular polyphenol complexes by the B3P86 density functional coupled with some corrections for dispersion. We couple here the B3P86 functional with the D3 correction for dispersion, assessing systematically the accuracy of the new B3P86-D3 model using for that the well-known S66, HB23, NCCE31, and S12L datasets for non-covalent interactions. Furthermore, the association energies of these complexes were carefully compared to those obtained by other dispersion-corrected functionals, such as B(3)LYP-D3, BP86-D3 or B3P86-NL. Finally, this set of models were also applied to a database composed of seven non-covalent polyphenol complexes of the most interest.FDM acknowledges financial support from the Swedish Research Council (Grant No. 621-2014-4646) and SNIC (Swedish National Infrastructure for Computing) for providing computer resources. The work in Limoges (IB and PT) is supported by the “Conseil RĂ©gional du Limousin”. PT gratefully acknowledges the support by the Operational Program Research and Development Fund (project CZ.1.05/2.1.00/03.0058 of the Ministry of Education, Youth and Sports of the Czech Republic). IB gratefully acknowledges financial support from “Association Djerbienne en France”

    Twenty-four-hour blood pressure profile in idiopathic REM sleep behavior disorder

    No full text
    Study Objectives: To determine whether autonomic dysfunction in idiopathic REM sleep behavior disorder (iRBD) affects circadian blood pressure (BP) profile. Methods: Twenty-one iRBD (mean age 68.8 ± 6.4, mean age at onset 62.2 ± 9.3), 21 drug-free de novo Parkinson's disease (PD) and 21 control participants (HCs), comparable for age and sex, underwent 24-h ambulatory BP monitoring. A prospective follow-up study was performed to evaluate the occurrence of neurodegenerative disorders in the iRBD cohort. Results: In the iRBD group, nighttime systolic BP (SBP) was higher (124.0 ± 20.0, p =. 026), nocturnal BP decrease lower (4.0 ± 8.7% for SBP and 8.7 ± 8.0% for diastolic BP [DBP], p =. 001), and nondipping status more frequent (71.4% for SBP and 52.4% for DBP; p =. 001 and p =. 01, respectively) than in the HCs. Reverse dipping of SBP was found in 23.8% (p =. 048) of the iRBD participants. Nondipping status was not associated with differences in gender, age, disease duration, age at disease onset, UPDRS score, presence of antihypertensive therapy, or polysomnographic measures. Patients with PD showed daytime and nighttime BP profiles comparable to those observed in iRBD. A subgroup analysis considering only the participants without antihypertensive therapy (12 iRBD, 12 PD) showed results superimposable on those of the whole iRBD and PD groups. Longitudinal follow-up (mean 5.1 ± 1.9 years) showed no differences in BP profile at baseline between converters (n = 6) and nonconverters. Conclusions: Twenty-four-hour BP control was impaired in iRBD. This impairment, similar to patterns observed in de novo PD, consisted of reduced amplitude of nocturnal dipping and increased frequency of nondipping status. These findings could have implications for cardiovascular morbidity and mortality in iRBD
    • 

    corecore