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GRAPHICAL ABSTRACT 1 

 2 

ABSTRACT  3 

Long-range non-covalent interactions play a key role in the chemistry of natural polyphenols. 4 

We have previously proposed a description of supramolecular polyphenol complexes by the 5 

B3P86 density functional coupled with some corrections for dispersion. We couple here the 6 

B3P86 functional with the D3 correction for dispersion, assessing systematically the accuracy of 7 

the new B3P86-D3 model using for that the well-known S66, HB23, NCCE31 and S12L datasets 8 

for non-covalent interactions. Furthermore, the association energies of these complexes were 9 

carefully compared to those obtained by other dispersion-corrected functionals, such as 10 

B(3)LYP-D3, BP86-D3 or B3P86-NL. Finally, all this set of models were also applied to a 11 

database composed of seven non-covalent polyphenol complexes of the most interest.  12 

  13 
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1. Introduction 1 

Polyphenols constitute one of the most important groups of natural compounds with ca. 105 2 

defined structures including phenolic acids, lignans, flavonoids, coumarins and stilbenoids. They 3 

are abundant in the plant kingdom and can be isolated from all plant organs (e.g., wood, root, 4 

flower, leaf, fruit) [1,2]. Their properties have been extensively investigated over the past years. 5 

First of all, because the human diet is rich in polyphenols and due to their chemical diversity, 6 

they exhibit a broad range of biological activities including cardiovascular [3], hepatic [4,5] and 7 

neurologic [6] protective activities. Second, elucidation of their biomimetic synthesis has always 8 

been a very active field of research [7] with the purpose of discovering new active compounds. 9 

Last but not the least, numerous polyphenols are colored (e.g., anthocyanidins, chalconoids, 10 

curcuminoids), which opens many opportunities in food industry to control pigmentation and 11 

develop new hues. 12 

Theoretical chemistry has provided useful insights for all this phenomena by giving an 13 

accurate atomistic-like picture for the understanding of their macroscopical activities [8-15]. It 14 

has been of particular help to rationalize the capacity of polyphenols to form non-covalent self-15 

assemblies in real-world samples. Many physical chemical processes are influenced by these 16 

supramolecular assemblies such as (i) UV/Vis properties [16,15,17] and thus pigmentation, (ii) 17 

regio- and stereoselectivity of oxidative coupling [18-20,14], and (iii) kinetics of free radical 18 

scavenging [12]. The related key biological processes strongly depend on the underlying non-19 

covalent interactions such as: (i) plant color persistence [16,13] and hue variety in fruit and 20 

beverages [21,22], (ii) biomimetic syntheses [7], and (iii) antioxidant activity [12,23,24], 21 

respectively. These fields now require more than ever a deep understanding at the molecular 22 

level, which can be efficiently supported by quantum-chemical calculations. The cost-efficient 23 

yet accurate treatment of these interactions by ab initio methods is still challenging regarding the 24 

large size of these real-world systems and the interplay between electrostatic and dispersion 25 

interactions. Thus, Density Functional Theory (DFT) nowadays has become a judicious 26 

compromise to perform such calculations for large systems, reaching a high accuracy at a 27 

reasonable computational time. On one hand, the use of fine-tuned expressions for non-covalent 28 

interactions, such as dispersion-corrected DFT-D [25-31] or DFT-NL [32-34] methods, is key to 29 

accurately describe supramolecular assemblies of natural compounds. The choice of the ad 30 

equate functional is, on the other hand, also important for the description of electronic structure 31 



 4 

issues. In this context, we have recently proposed the coupling of the B3P86 functional with the 1 

DFT-D2 [15] and DFT-NL formalisms [14], since B3P86 has been shown to behave accurately 2 

enough for the rich chemistry of polyphenol compounds [15,14,35-37]. Therefore, the present 3 

study aims at an improvement of this description using the DFT-D3 formalism and then the 4 

corresponding B3P86-D3 method is thoroughly assessed against standard non-covalent 5 

databases, but also for a 7-member group of non-covalent natural polyphenol systems including 6 

selected supramolecular geometries [38,15,14] of the most interest (see Scheme 1 and Figure 1). 7 

 8 

 9 
Scheme 1. Chemical structures of (a) phenol, (b) ε-viniferin, (c) 3-O-methylcyanidin and (d) 10 

quercetin. The hydrogen atoms and corresponding C-H bonds have been omitted for clarity. 11 

 12 

To do it, the parameters entering into the –D3 correction have been fitted against the S66 13 

database following a brute-force procedure. It must be stressed that two types of damping 14 

functions have been proposed within the DFT-D formalism, namely Zero-Damping (ZD) and 15 

Becke-Johnson[39-41] (BJ) damping functions. To evaluate the robustness of the new model, 16 

both B3P86-D3(BJ) and B3P86-D3(ZD) functionals were first tested against the S66 [42], HB23 17 

[43] and NCCE31 [44-46] databases and consequently compared to well-known Becke family 18 

functionals, i.e., BP86, BLYP, B3LYP and B3P86 variants (including or not various dispersion 19 

corrections). Our previous parameterizations of B3P86-D2 and B3P86-NL are also included to 20 

underline the improvement provided by DFT-D3 formalism. Finally, the B3P86-D3 performance 21 

is validated on more real-world systems from S12L database [47] and seven natural non-covalent 22 

polyphenol systems  23 
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 1 
Figure 1. Optimized structures of the 7-member group of non-covalent natural polyphenol 2 

systems. The corresponding XYZ Coordinates are available in Supporting Information. 3 

2. Theoretical considerations 4 

2.1. Computational details 5 

All calculations were performed with the ORCA 2.8.1 and 2.9.0 packages for both DFT-D2 and 6 

DFT-NL formalisms, respectively [48], while the DFT-D3 study (i.e., ZD- and BJ-functions as 7 

well as three-body term) was carried out using Grimme’s code [49]. 8 

The different parameters for the –D3 function were obtained by a brute-force method for both 9 

ZD and BJ functions, namely B3P86-D3(ZD) and B3P86-D3(BJ), respectively. With the former 10 

function, a set of s8 and sr,6 values in the ranges 0.500-3.500 and 0.500-2.100, respectively, were 11 

tested against the S66 dataset. For the latter function, the s8, α1 and α2 values were tested in the 12 

0.700-3.000, 0.300-0.700 and 4.000-5.000 ranges, respectively. This screen will cover 13 
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 6 

extensively all the physically meaningful space (vide infra). It must be stressed that the 1 

elucidation of B3P86-D3(ZD) parameters was investigated in order to provide a complete 2 

assessment of B3P86-D3 refinement. However, the use of ZD function is not recommended with 3 

respect to BJ one since the latter consider the correct physical short-range behavior.[Ref]  4 

The Def2-QZVPP (large) basis set used is believed to be close to the asymptotic region, thus 5 

preventing from Basis Set Superposition Error (BSSE) [14]. Note also that we used Resolution-6 

of-the-Identity (RI) together with the “Chain-Of-Sphere eXchange” (COSX) algorithms, leading 7 

to dramatic speed-up of calculations without exhibiting any significant lack of accuracy (see 8 

Supporting information) [50,51]. The Def2-QZVPP auxiliary basis set (i.e., Def2-QZVPP/JK) 9 

was taken from the hardwired library. Numerical thresholds were systematically increased during 10 

the B3P86-D3 parameterization (i.e., VeryTightSCF, NoFinalGrid, GRID7, GRIDX6) with 11 

respect to the defaults to avoid as much as possible any numerical error. The numerical threshold 12 

and basis set were slightly modified for both S12L and polyphenol datasets to overcome 13 

numerical stability issues on very large systems (i.e., Def2-TZVPP, TightSCF, NoFinalGrid, 14 

GRID6, GRIDX5). When needed (i.e., polyphenol complexation measured in water [52]), 15 

calculations were performed using implicit solvent models in which the solute is embedded in a 16 

shape-adapted cavity surrounded by a structure-less dielectric continuum, namely COnductor-17 

like Screening MOdel (COSMO) [53]. 18 

 19 

2.2. Comparison of B3P86-D3 parameters with respect to known functionals 20 

A true minimum in the three-parameter dependent hypersurface was obtained with s8 = 2.483, α1 21 

= 0.541 and α2 = 4.306 for B3P86-D3(BJ). As expected, s8 is 24% higher for the GGA functional 22 

compared to the corresponding hybrid (s8 = 3.282 and 2.483 for BP86-D3(BJ) and B3P86-23 

D3(BJ), respectively, see Supporting Information). This is similarly observed for the BLYP-24 

D3(BJ)/B3LYP-D3(BJ) values (s8 is 26% higher for BLYP-D3(BJ)). This trend is in perfect 25 

agreement with previous studies since B88-based exchange functionals have been shown to 26 

exhibit a larger s8 parameter than others (e.g., PBE0-D3(BJ) s8 parameter is 1.218) [28]. Besides, 27 

α1(α2) parameters are higher(lower) for B3P86-D3(BJ) than for B3LYP-D3(BJ), while it is 28 

higher(lower) for BLYP-D3(BJ) than for BP86-D3(BJ) (see Table 1a). This might indicate how 29 

the correction of B3P86-D3(BJ) is less long-ranged and more atom-pair dependent than B3LYP-30 
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D3(BJ). In other words, B3P86 inherently requires less correction because behaves less 1 

repulsively than B3LYP, which also agrees with the previous DFT-D2 parameterization since s6 2 

was also found to be lower for B3P86-D2 than for B3LYP-D2 [15]. 3 

The two functional-dependent parameters for B3P86-D3(ZD) have been also correspondingly 4 

obtained (s8 = 0.720 and sr,6 = 1.110, see Supporting Information). The value of s8 for B3P86-5 

D3(ZD) is significantly lower than for B3LYP-D3(ZD) (s8 = 0.720 and 1.703 for B3P86-D3(ZD) 6 

and B3LYP-D3(ZD), respectively, see Supporting Information).  7 

As a first sight, the combination of the hybrid B88 exchange functional with the P86 8 

correlation functional might better perform for long-range description than the combination with 9 

LYP as a correlation functional. It must be noted that BLYP has appeared less repulsive than 10 

BP86 [27], in contradiction with the present results obtained for the hybrid forms. Our results 11 

clearly suggest that the hybrid form B3P86 might be well-suited for an accurate description of 12 

long-range interactions when coupled with a correction for dispersion. We hope to confirm these 13 

finding next by assessing the B3P86-D3 parameterizations against various databases dedicated to 14 

non-covalent interactions.  15 

 16 

3. Relevance of B3P86-D3 against standard databases 17 

3.1. The biochemically inspired S66 database 18 

The S66 database comprises a set of bioinspired molecular structures (e.g., amino acids from 19 

proteins or nucleic acids from DNA) exhibiting the most common non-covalent interactions 20 

(including dispersion, electrostatic and mixed systems) [42]. A summary of the benchmarking 21 

done is presented in Figure 2a with further details for the different subsets reported in Table 1. 22 

MAD was reduced to 0.46 and 0.36 kcal.mol-1 for B3P86-D2 and B3P86-NL, respectively (see 23 

Figure 2a), thus validating the previous parameterization of B3P86 within the DFT-D2 and DFT-24 

NL framework using smaller databases for it [15,14]. Interestingly, the MAD of B3P86-D3 is ca. 25 

halved with respect to B3P86-D2, whatever the damping function is used (MAD = 0.24, 26 

kcal.mol-1 for both B3P86-D3(BJ) and -D3(ZD), see Figure 2a).  27 

Broadly speaking, B3P86-D3 results are slightly better than BP86-D3 and B3LYP-D3 but 28 

without outperforming those obtained by BLYP-D3 (e.g., MAD = 0.31, 0.25 and 0.17 kcal.mol-1, 29 
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for BP86-D3, B3LYP-D3 and BLYP-D3, respectively, see Figure 2a). However, no clear 1 

statement can be provided regarding the slight differences observed between these functionals.  2 

 3 
Figure 2. Mean absolute deviation (MAD, kcal.mol-1) of selected functionals with or without 4 

dispersion corrections, for the (a) total S66, (b) HB23 and (c) NCCE31 benchmarks. All the 5 

calculations were performed with the Def2-QZVPP basis set. 6 

 7 

In the remaining of this section, only the dispersion and mixed (electrostatic and dispersion) 8 

interactions are separately discussed, as the S66 electrostatic-like subset is contained (vide infra) 9 

in the HB23 database. Among all the functionals used, the lowest MAD values for the S66 10 

dispersion subset are again in a very narrow range. Actually, the lowest MAD is observed for 11 

both B3P86-D3 revisions (MAD = 0.15 kcal.mol-1 for both B3P86-D3(BJ) and -D3(ZD), see 12 

Table 1). It must be emphasized that B3P86-NL seems also suitable for dispersion-driven 13 

systems while B3P86-D2 and B3LYP-D3(ZD) appears less appropriate (MAD = 0.17, 0.66 and 14 



 9 

0.29 kcal.mol-1, for B3P86-NL, -D2 and B3LYP-D3(ZD), respectively - see Table 1). On the 1 

other hand, no significant difference is observed between the different corrections for the mixed 2 

systems (e.g., MAD = 0.26 and 0.13 kcal.mol-1 for B3P86-D2 and B3P86-D3(BJ), respectively, 3 

Table 1). Overall, the dispersion-corrected B3P86 functionals appear well-suited for this mixed 4 

(electrostatic and dispersion) class of biochemically inspired systems. 5 

 6 

Table 1. Mean Absolute Deviation (MAD, kcal.mol-1) on S66 subsets (i.e., Dispersion and 7 

Mixed, see text) and NCCE31 subsets (i.e., NCCE31-CNOH, rare gas NCCE31-RG and halogen 8 

NCCE31-X, see text) for selected functionals of interest with or without dispersion corrections. 9 

All the calculations were performed with the Def2-QZVPP basis set. 10 

Functional Dispersion correction 
S66   NCCE31 

Dispersion Mixed   CNOSH  RG  X  

BLYP 

Uncorrected 6.08 3.72 
 

2.39 0.39 1.25 

D3(BJ) 0.20 0.11 
 

0.30 0.13 2.02 

D3(ZD) 0.52 0.32   0.41 0.07 1.82 

BP86 

Uncorrected 5.50 3.31 
 

2.02 0.60 1.28 

D3(BJ) 0.36 0.18 
 

0.42 0.36 2.08 

D3(ZD) 0.70 0.46   0.52 0.29 2.02 

B3LYP 

Uncorrected 5.11 2.96 
 

1.72 0.29 0.64 

D3(BJ) 0.18 0.15 
 

0.39 0.07 1.16 

D3(ZD) 0.29 0.23   0.34 0.03 0.99 

B3P86 

Uncorrected 4.70 2.69 
 

1.48 0.46 0.66 

D2 0.66 0.26 
 

0.58 0.24 0.88 

D3(BJ) 0.15 0.14 
 

0.42 0.27 1.01 

D3(ZD) 0.15 0.14 
 

0.36 0.23 0.91 

NL(b=5.1) 0.17 0.18   0.56 0.21 1.43 

 11 

3.2. The Hydrogen bonding HB23 database   12 

The HB23 database is an improved version of the S66 electrostatic-like subset, in which 13 

association energies have been recently refined by Di Labio et al [43]. Indeed, the original S66 14 

database possibly underestimated association energies of the electrostatic-like subset systems due 15 

to the counterpoise correction used originally.  16 
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As it should be, B3P86 dispersion corrected MAD values are significantly lower than those 1 

from the uncorrected B3P86. B3P86-D3(BJ) exhibits the lowest MAD (MAD = 0.40, 0.42, 0.43 2 

and 0.70 kcal.mol-1 for B3P86-D3(BJ), B3P86-D3(ZD), B3P86-D2 and B3P86-NL, respectively 3 

- see Figure 2b). No significant differences were observed between the DFT-D2 and DFT-D3 4 

corrections. A slightly higher MAD was observed for B3P86-NL; however, this functional 5 

should not be discarded since MAD is still acceptably low.  6 

In summary, B3P86-D3(BJ) exhibits reliable results with respect to the best performing 7 

BLYP-D3(BJ) (MAD = 0.22 and 0.40 kcal.mol-1 for BLYP-D3(BJ) and B3P86-D3(BJ), 8 

respectively,  Figure 2b). 9 

 10 

3.3. The atypical long-range NCCE31 database 11 

The S66 database focuses on biochemically inspired systems, so only compounds made of 12 

carbon, nitrogen, oxygen and hydrogen are included, as being the most common atoms of living 13 

organisms. However, dispersion effects attributed to halogen atoms, as chlorine and fluorine, 14 

may exhibit some specific behavior due to larger polarizability effects. To explore further this 15 

feature, the NCCE31 database was built by Truhlar et al. [44-46], in which chemical systems 16 

include either halogen atoms, namely chlorine and fluorine, or rare gas atoms, namely helium, 17 

neon and argon.  18 

The results from B3P86-D3(ZD) closely agree with those from B3LYP-D3(ZD). Indeed, these 19 

two dispersion-corrected hybrid functionals provided the best description of long-range 20 

interactions on such systems (MAD of 0.55 and 0.53 kcal.mol-1, respectively, see Figure 2c). 21 

This highlights the importance of HF-like exchange to improve description of systems containing 22 

halogen atoms. However, MAD values were significantly higher than those obtained here for the 23 

S66 and HB23 databases. As a representative example, B3P86-D3(BJ) MAD was 0.62 and 0.24 24 

kcal.mol-1 for NCCE31 and S66, respectively (see Figure 2a&c). Nevertheless, all dispersion-25 

corrected functionals are still under the “chemical accuracy” threshold (i.e., < 1 kcal.mol-1) 26 

except for those based on BP86 (MAD = 1.05 and 1.06 kcal.mol-1 with BP86-D3(BJ) and BP86-27 

D3(ZD), respectively, see Figure 2c). 28 

The lower performance on NCCE31 was thoroughly studied by designing three ad hoc 29 

NCCE31 subsets according to atomic composition, namely (i) NCCE31-CNOSH containing 30 

exclusively C-, N-, O-, S- and H-atoms; (ii) NCCE31-RG containing helium, neon, argon and 31 
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 11 

without halogen; and (iii) NCCE31-X containing chlorine and fluorine but discarding rare gas 1 

atoms.  2 

We note first that all dispersion-corrected functionals provided excellent results for both 3 

NCCE31-CNOSH and NCCE31-RG subsets (see Table 1) in which dispersion has a major 4 

contribution. For instance, B3P86-D3(BJ) exhibits MAD values lower than 0.45 kcal.mol-1 (0.42 5 

and 0.27 kcal.mol-1 for NCCE31-CNOSH and NCCE31-RG-based subsets, respectively, Table 6 

1).  7 

On the other hand, the dispersion-corrected functionals failed at accurately describing the 8 

NCCE31-X subset, providing deviations even higher than the corresponding uncorrected forms 9 

(Table 1). The presence of halogens in such small systems increases the local electrostatic bond 10 

feature, which is inherently well described by uncorrected functionals. Therefore, the use of such 11 

dispersion corrections tends to overbind NCCE31-X complexes by overestimating the dispersion 12 

contribution, Mean Deviation being e.g., -0.81 and -0.48 kcal.mol-1 for B3LYP-D3(BJ) and 13 

B3P86-D3, respectively (see Supporting Information).  14 

 15 

4. Assessment of the B3P86-D3 model for large systems 16 

4.1. The S12L database 17 

Recently, the S12L database has been proposed to assess dispersion-corrected functionals on 18 

large π-delocalized systems having real-world applications, including e.g., non-covalent 19 

complexes with C60 and C70 fullerenes or dicationic ferrocene derivatives [47]. This database has 20 

been especially designed to assess both the three-body term (so-called ABC-term) contained in 21 

the DFT-D3 formalism, as well as the thermodynamic contributions. It must be stressed that the 22 

present study only deals with the former; vibrational analysis would have required huge 23 

computational resources, which are beyond the scope of work. Note also that calculations were 24 

performed here with the triple-ζ basis set due to some numerical instabilities when using the 25 

quadruple-ζ basis set. This is however not expected to largely influence the conclusions dropped 26 

here. 27 

The different dispersion corrections are able to drastically improve the description of S12L 28 

association energies (see Table 2). Interestingly, B3P86-D2 provides a very low error (MAD = 29 

1.6 kcal.mol-1) while B3P86-NL appears not so suited to predict association energies for these 30 



 12 

systems (MAD = 8.3 kcal.mol-1). B3P86-NL should thus be carefully used for the large S12L 1 

systems. DFT-D3 correction ranges from 2.2 to 6.0 kcal.mol-1 (see Table 2), the relevance of the 2 

ABC-term within the DFT-D3 framework was previously highlighted for such big systems [47]. 3 

DFT-D3(BJ) is more affected by ABC-term correction than DFT-D3(ZD), the MAD difference 4 

between the uncorrected and corrected values being 2.2 and 1.0 kcal.mol-1 for DFT-D3(BJ) and 5 

DFT-D3(ZD), respectively (Table 2).  6 

 7 

Table 2. Association energies (kcal.mol-1) and mean absolute deviation (MAD, kcal.mol-1) for 8 

S12L dataset. All the calculations were performed with the Def2-TZVPP basis set.  9 

Structure B3P86 
B3P86 

-D2 

B3P86-D3(BJ)   B3P86-D3(ZD) B3P86 

-NLa 
Referenceb 

no-ABC ABC 
 

no-ABC ABC 

1 2.1 -1.6 -3.1 -3.0 
 

-2.5 -2.4 -2.6 -2.8 

2a 1.6 -29.7 -37.1 -35.2 
 

-32.2 -30.4 -37.0 -30.3 

2b 3.4 -19.5 -24.7 -23.3 
 

-20.9 -19.6 -24.2 -20.5 

3a 2.1 -23.1 -29.6 -27.7 
 

-27.0 -25.2 -32.3 -24.4 

3b -5.4 -18.7 -22.2 -21.5 
 

-21.3 -20.5 -24.5 -20.4 

4a 14.9 -30.9 -41.1 -37.7 
 

-30.4 -27.2 -44.9 -31.8 

4b 15.4 -33.1 -44.3 -40.5 
 

-33.2 -29.6 -47.0 -32.6 

5a -14.8 -36.7 -38.7 -37.6 

 

-38.2 -37.2 -41.5 -31.9 

5b -3.9 -23.1 -26.3 -25.2 

 

-25.2 -24.2 -28.1 -20.4 

6a -61.9 -83.0 -87.7 -85.3 

 

-87.6 -85.3 -89.9 -82.2 

6b -62.0 -79.8 -83.7 -81.7 

 

-83.5 -81.6 -85.1 -78.9 

7a -84.4 -132.9 -138.7 -133.8 

 

-137.2 -132.3 -146.0 -129.6 

7b 5.0 -25.2 -31.7 -28.2 

 

-30.2 -26.8 -35.5 -25.7 

MAD 26.4 1.6 6.0 3.8  3.2 2.2 8.3 - 
a b=5.1, see Ref. [14] 
b From Ref. [47]  

  10 
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We are aware that these results can be analyzed only at a semi-quantitative level. The basis set 1 

used is not sufficiently large and the use of counterpoise (CP) correction might overestimate the 2 

associated BSSE [47]. However, some trends emerged from the array of data [54,55]. As a 3 

matter of illustration, the D3-like corrections used led to an accurate description of these systems 4 

considering that the “chemical accuracy” (defined as an error below 1 kcal.mol-1) is unrealistic 5 

for large systems. In other words, an error of 2-3 kcal.mol-1 would be a more realistic target. 6 

The common dispersion correction tends to overestimate association energies (see Supporting 7 

Information) and, finally, the use of the repulsive ABC-term for B3P86-D3 significantly 8 

decreases this overestimation.  9 

 10 

4.2. Natural polyphenol dataset 11 

Over the past years, the chemistry of polyphenol has been of utmost importance in food science. 12 

Non-covalent interactions have been shown to play a key role in optical, chemical and biological 13 

properties of polyphenols [17,18,15,12,16,22]. Even if we are aware that theoretical chemistry 14 

aims at finding the generally applicable methods, we believe that, regarding the huge amount of 15 

phenolic derivatives and the huge amount of possible non-covalent association of interest, both 16 

dispersion and H-bonding interactions drive polyphenol non-covalent dimerization. Thus, we 17 

still believe that this family deserves particular attention (i.e. specific methods and database for 18 

further benchmarking).  19 

Therefore, the seven non-covalent polyphenol systems studied here include the phenol T-20 

shaped dimer taken from S22; for which the geometry was obtained at the MP2/CBS level of 21 

theory [29]. This system is driven only by H-bond since no π-stacked conformation has been 22 

identified yet as being more stable.  23 

The complete potential energy surface of the 3-O-methylcyanidin:quercetin dimer (namely 24 

C:Q) was previously explored at the B3P86-D2/cc-pVDZ level of theory, revealing the existence 25 

of five conformations, namely C:Q conformers 1-5 [15]. These systems are mainly driven by π-26 

stacking forces, as favored by the strong π-electron delocalization character of C:Q. The 27 

existence of numerous OH groups in each partner (see Scheme 1) induces a strong competition 28 

between intra- and intermolecular H-bonding (Figure 1), making the global H-bonding 29 

contribution weak in these complexes. The use of the five conformations allows having a 30 



 14 

reasonable conformational sampling. The Boltzmann-weighted average association energy 1 

derived from the relative electronic energy between all five conformers can then be compared to 2 

the reference experimental value [52]. 3 

The third system includes the ε-viniferin dimer previously elucidated [14]. This system 4 

exhibits both H-bonding and π-stacking contributions. The complete potential energy surface has 5 

not been yet explored due to the high number of degrees of freedom and the system size, 6 

however this dimer might be used as a relevant system for studying the interplay between hybrid 7 

H-bonding and π-stacking. 8 

 9 

Table 3. BSSE-uncorrected association energies (kcal.mol-1) for the 7-member group of non-10 

covalent natural polyphenol systems with (a) B3P86 and (b) SCS-MP2 methods refinements. All 11 

the calculations were performed with Def2-TZVPP basis set.  12 

(a)  13 

 

Conf B3P86 
B3P86 

-D2 

B3P86-D3(BJ)  B3P86-D3(ZD)  B3P86-NL 

no-

ABC ABC 

 no-

ABC ABC 

 

b=5.1 b=5.3 

Phenol dimer -3.7 -6.9 -7.3 -7.2  -7.3 -7.3  -7.5 -7.3 

C:Q 1 14.0 -9.8 -12.8 -11.6  -10.3 -9.2  -14.7 -13.5 

 

2 14.5 -10.4 -13.1 -11.9  -11.0 -9.8  -15.3 -14.0 

 

3 14.8 -11.2 -15.1 -13.8  -12.1 -10.8  -17.1 -15.8 

 

4 14.9 -10.5 -13.8 -12.5  -11.5 -10.3  -15.8 -14.5 

 

5 16.8 -10.9 -14.0 -12.6  -11.5 -10.1  -16.7 -15.2 

ε-viniferin dimer 21.5 -8.5 -11.6 -9.8  -9.5 -7.8  -14.3 -12.9 

 14 

(b) 15 

 

Conf. SCS-MP2 SCS-MP2- D2 SCS-S66-MP2  

Phenol dimer 

 

-6.9 -7.5 -8.0 

C:Q 1 -15.8 -20.7 -21.7 

 

2 -16.4 -21.5 -24.8 

 

3 -20.1 -25.4 -24.8 

 

4 -18.0 -23.2 -22.8 

Florent Di Meo � 21/9/2015 13:43
Deleted:  [56]16 



 15 

 

5 -18.8 -24.5 -22.9 

ε-viniferin dimer 

 

-20.3 -26.4 -14.2 

 1 

Assessment of association energies. For the phenol dimer, the reference association energy (ΔE = 2 

-7.1 kcal.mol-1, see Figure 3a) was obtained with the current computationally acceptable “gold 3 

standard” CCSD(T)/CBS level of theory [38]. The uncorrected B3P86 method exhibits 4 

association energy of -3.7 kcal.mol-1, pointing out at least the qualitative correct description of 5 

H-bonds (electrostatic-like) by B3P86. However, the use of dispersion correction is mandatory 6 

for a more complete description of all the non-covalent interactions arising in the phenol dimer. 7 

All dispersion corrected functionals (i.e., DFT-D or DFT-NL) provided association energies in 8 

the range from -7.5 to -6.9 kcal.mol-1, and thus in very good agreement with the CCSD(T)/CBS 9 

reference value (see Table 3 and Figure 3a). The triple-ζ basis set seems to be sufficient to reach 10 

up the basis set limit for such a small system. The use of the ABC-term does not bring any 11 

significant difference, as it was previously suggested for small systems [28,47]. It must be 12 

stressed that two slightly different forms of B3P86-NL were assessed here. Recently, a different 13 

attenuating parameter b = 5.3 [57] was proposed to couple the –NL correction to the B3P86 14 

functional, comparable to our previous estimate of b = 5.1 [14]. As it is expected, association 15 

energies do not differ between both methods (i.e., ΔE = -7.5 and -7.3 kcal.mol-1, for b = 5.1 and 16 

5.3, respectively, see Table 3 and Figure 3a). 17 

The association energy of reference for C:Q complexes was experimentally derived in solution 18 

(ΔH = -13.9 kcal.mol-1, see Table 4 and Figure 3b) [52].  It must be stressed that calculations 19 

from the present study do not include thermodynamic corrections. However, no significant 20 

differences between enthalpy and internal energies are expected: vibrational thermal corrections 21 

of each free partner are expected to cancel the global vibrational thermal correction on the dimer. 22 

It must be stressed that specific solvation contributions to enthalpy are neglected. Theoretical 23 

association energies are either presented for each conformation (Table 3) or as a Boltzmann-24 

weighted interaction energy (ΔEboltz, see Table 4 and Figure 3b). The latter is used when 25 

theoretical results are compared to the experimental value.  26 

B3P86-D2 association energies in the present study are significantly higher (by 2.8 kcal.mol-1) 27 

than those performed in our previous study [15] (see Table 3). Our previous association energies 28 



 16 

were performed with a lower basis set and corrected by the counterpoise correction, and will be 1 

thus recalculated here. DFT-D3 is the best performing with respect to DFT-NL and DFT-D2, 2 

providing the closest value to experiment (Table 4 and Figure 3b). The use of the three-body 3 

term together with the ZD-damping function obviously enhances the error by adding the ABC-4 

repulsive term (ΔEboltz = -11.8 and -10.5 kcal.mol-1 for B3P86-D3(ZD) without or with three-5 

body correction, respectively, Table 4). The use of the BJ-damping function is thus 6 

recommended to describe such systems since results are closer to the experimental value (ΔEboltz 7 

= -13.4 and -14.8 kcal.mol-1 for B3P86-D3(BJ) with or without three-body correction, 8 

respectively, Table 4). C:Q are systems big enough to be significantly affected by the three-body 9 

correction, which is thus recommended to be always included for large supramolecular 10 

complexes.  11 

 12 

Table 4. Calculated and reference association energies (ΔE, kcal.mol-1) of Boltzmann-weighted 13 

C:Q subset. All the calculations were performed with the Def2-TZVPP basis set. 14 

Method 
  ΔEboltz

a 
DFT B3P86 

 
14.3 

 B3P86-D2 
 

-10.9 

 
B3P86-D3(BJ) No-ABC -14.8 

  
ABC -13.4 

 
B3P86-D3(ZD) No-ABC -11.8 

  
ABC -10.5 

 
B3P86-NL b=5.1 -16.8 

 
B3P86-NL(b=5.3) b=5.3 -15.5 

SCS-MP2 SCS-MP2 
 

-19.9 

 
SCS-MP2-D2 

 
-25.2 

 
SCS-S66-MP2 

 
-24.7 

a Experiments exhibits association enthalpy ΔH = -13.9 

kcal.mol-1, see Ref. [52] 
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Regarding association energies of the ε-viniferin, the following sequence is observed: B3P86-16 

D2 ≈ B3P86-D3(ZD)-ABC > B3P86-D3(ZD) > B3P86-D3(BJ)-ABC > B3P86-D3(BJ) > B3P86-17 

NL. It must be stressed that neither experimental reference value nor high-level post-HF 18 

calculations (i.e., CCSD(T)/CBS calculation) are available for this dimer. The association energy 19 

of ε-viniferin dimer was previously obtained at the SCS-MP2/Def2-TZVPP level of theory, 20 



 17 

which will be confirmed here [14]. It must be stressed that SCS-MP2 method consists in a 1 

refinement of MP2 one, in which spin-paired and spin-unpaired electron contributions are scaled  2 

[58]. Three SCS-MP2 methods were actually also assessed for the 7 non-covalent polyphenol 3 

prototypes, namely the native SCS-MP2 method [58] and a pair of dispersion-driven 4 

refinements; the SCS-MP2-D2; and the SCS-S66-MP2 variant [59]. Indeed, its native form 5 

(SCS-MP2) exhibits significant error with respect to S66, while the SCS-MP2-D2 refinements 6 

for non-covalent interactions are expected to be more accurate for this study [42,59]. 7 

For the sake of comparison, the BLYP, BP86 and B3LYP functionals (with and without their 8 

respective DFT-D3 correction) were also assessed and their results reported in Figure 3.  9 



 18 

 1 
Figure 3. Calculated and reference association energies (ΔE, kcal.mol-1) of (a) Phenol dimer and 2 

(b) Boltzmann-weighted C:Q subset. All the calculations were performed with the Def2-TZVPP 3 

basis set. 4 

It must be noticed that all SCS-MP2 based methods overestimate binding of phenol dimer and 5 

C:Q complexes with respect to reference values (see Table 3b and Figure 3). The use of SCS-6 

MP2 related methods is therefore not as appropriate as dispersion-corrected DFT, considering 7 

the involved  higher computational effort. The same concluding remark could be applied to 8 

B3P86-NL, but to a lesser extent. This formalism tends to globally overestimate binding for the 9 



 19 

7-member group of non-covalent natural polyphenol systems as shown in Tables 4 and Figure 3. 1 

Interestingly, among conventional DFT functionals, BLYP and B3LYP exhibit good agreement 2 

with respect to reference only with DFT-D3(BJ) correction including ABC-term while BP86 3 

tends to overestimate polyphenol binding energies. Such results again highlight the importance 4 

of three-body term for polyphenol systems since only DFT-D3 corrections including ABC term 5 

provide acceptable results. Among all dispersion-corrected DFT assessed here, the following 6 

sequence is given BP86-D3(BJ) < B3P86-NL ≈ B3P86-D2 < B3LYP-D3(BJ) < BLYP-D3(BJ) ≈ 7 

B3P86-D3(BJ), in terms of accuracy. 8 

 9 

5. Conclusion 10 

In this study, the parameterization of the B3P86-D3 dispersion-corrected model is done against 11 

the S66, and further assessed using the HB23, NCCE31 and S12L databases of non-covalent 12 

compounds. Both the BJ- and ZD-damping functions were systematically evaluated. The 13 

performance of B3P86-D3 has been compared with that of BLYP-D3, BP86-D3 and B3LYP-D3, 14 

showing that B3P86-D3(BJ) emerges one of the best performing and cost-efficient methods for 15 

real-world phenolic systems. We have also confirmed the goof performance of B3P86-D3 on the 16 

7-member group of non-covalent natural polyphenol systems providing a significant 17 

improvement with respect to the other previously derived dispersion-corrected B3P86 methods. 18 

B3P86-D3(BJ) is thus recommended for dealing with challenging (supramolecular issues) in 19 

polyphenol chemistry, also considering the low computational effort compare to the “gold-20 

standard” CCSD(T) or related SCS-MP2 methods. Keeping in mind that environmental 21 

conditions (e.g., polarity, pH, specific intermolecular interaction with solvent, presence of metal 22 

ions) should also be carefully treated when needed, we believe that the methodology is fully 23 

applicable for i) food and wine application (tuning optical properties in copigmentation 24 

complexes), and ii) in biology (antioxidant) properties.  25 

 26 

Supporting Information. Description of non-covalent refinement within DFT formalism; DFT-27 

D3 parameters for studied functionals; Interaction energies for studied functionals with S66, 28 

HB23 and NCCE31 databases; Global statistical analysis including MAD, RMSD and MD for 29 

S66, HB23, NCCE31, and S12L databases; XYZ-coordinates of seven non-covalent polyphenol 30 



 20 

systems and corresponding stand-alone polyphenols; Assessment of RIJCOSX reliability to 1 

energy minimum for C:Q system   2 
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