54 research outputs found

    LowDosePES: the low-dose photoelectron spectroscopy end-station at the PM4 beamline at BESSY II

    Get PDF
    A brief description of the main equipment at the Low Dose PhotoElectron Spectroscopy end-station is given, and a few possible applications highlighted

    Long-Term Degradation Mechanisms in Application-Implemented Radical Thin Films

    Get PDF
    Blatter radical derivatives are very attractive due to their potential applications, ranging from batteries to quantum technologies. In this work, we focus on the latest insights regarding the fundamental mechanisms of radical thin film (long-term) degradation, by comparing two Blatter radical derivatives. We find that the interaction with different contaminants (such as atomic H, Ar, N, and O and molecular H2, N2, O2, H2O, and NH2) affects the chemical and magnetic properties of the thin films upon air exposure. Also, the radical-specific site, where the contaminant interaction takes place, plays a role. Atomic H and NH2 are detrimental to the magnetic properties of Blatter radicals, while the presence of molecular water influences more specifically the magnetic properties of the diradical thin films, and it is believed to be the major cause of the shorter diradical thin film lifetime in air

    The CoESCA station at BESSY: Auger electron–photoelectron coincidences from surfaces demonstrated for Ag MNN

    Get PDF
    In this work, we present the CoESCA station for electron–electron coincidence spectroscopy from surfaces, built in a close collaboration between Uppsala University and Helmholtz-Zentrum Berlin at the BESSY II synchrotron facility in Berlin, Germany. We start with a detailed overview of previous work in the field of electron–electron coincidences, before we describe the CoESCA setup and its design parameters. The system is capable of recording shot-to-shot resolved 6D coincidence datasets, i.e. the kinetic energy and the two take off angles for both coincident electrons. The mathematics behind extracting and analysing these multi-dimensional coincidence datasets is introduced, with a focus on coincidence statistics, resulting in fundamental limits of the signal-to-noise ratio and its implications for acquisition times and the size of the raw data stream. The functionality of the CoESCA station is demonstrated for the example of Auger electron–photoelectron coincidences from silver surfaces for photoelectrons from the Ag 3d core levels and their corresponding MNN Auger electrons. The Auger spectra originating from the different core levels, 3d and 3d could be separated and further, the two-hole state energy distributions were determined for these Auger decay channels

    Stability of radical-functionalized gold surfaces by self-assembly and on-surface chemistry

    Get PDF
    We have investigated the radical functionalization of gold surfaces with a derivative of the perchlorotriphenylmethyl (PTM) radical, using two methods: by chemisorption from the radical solution and by on surface chemical derivatization from a precursor. We have investigated the obtained self-assembled monolayers by photon-energy dependent X-ray photoelectron spectroscopy. Our results show that the molecules were successfully anchored on the surfaces. The monolayers are characterized by air and beam stability unprecedented for films of organic radicals. Over very long beam exposure we observed a dynamic nature of the radical-Au complex. The results clearly indicate that (mono)layers of PTM; radical derivatives have the necessary stability to stand device applications

    Dirac states with knobs on: interplay of external parameters and the surface electronic properties of 3D topological insulators

    Get PDF
    Topological insulators are a novel materials platform with high applications potential in fields ranging from spintronics to quantum computation. In the ongoing scientific effort to demonstrate controlled manipulation of their electronic structure by external means, stoichiometric variation and surface decoration are two effective approaches that have been followed. In ARPES experiments, both approaches are seen to lead to electronic band structure changes. Such approaches result in variations of the energy position of bulk and surface-related features and the creation of two-dimensional electron gases.The data presented here demonstrate that a third manipulation handle is accessible by utilizing the amount of illumination a topological insulator surface has been exposed to under typical experimental ARPES conditions. Our results show that this new, third, knob acts on an equal footing with stoichiometry and surface decoration as a modifier of the electronic band structure, and that it is in continuous competition with the latter. The data clearly point towards surface photovoltage and photo-induced desorption as the physical phenomena behind modifications of the electronic band structure under exposure to high-flux photons. We show that the interplay of these phenomena can minimize and even eliminate the adsorbate-related surface band bending on typical binary, ternary and quaternary Bi-based topological insulators. Including the influence of the sample temperature, these data set up a framework for the external control of the electronic band structure in topological insulator compounds in an ARPES setting. Four external knobs are available: bulk stoichiometry, surface decoration, temperature and photon exposure. These knobs can be used in conjunction to tune the band energies near the surface and consequently influence the topological properties of the relevant electronic states.Comment: 16 pages, 8 figure

    Stability of radical-functionalized gold surfaces by self-assembly and on-surface chemistry

    Get PDF
    We have investigated the radical functionalization of gold surfaces with a derivative of the perchlorotriphenylmethyl (PTM) radical using two methods: by chemisorption from the radical solution and by on-surface chemical derivation from a precursor. We have investigated the obtained self-assembled monolayers by photon-energy dependent X-ray photoelectron spectroscopy. Our results show that the molecules were successfully anchored on the surfaces. We have used a robust method that can be applied to a variety of materials to assess the stability of the functionalized interface. The monolayers are characterized by air and X-ray beam stability unprecedented for films of organic radicals. Over very long X-ray beam exposure we observed a dynamic nature of the radical–Au complex. The results clearly indicate that (mono)layers of PTM radical derivatives have the necessary stability to withstand device applications.The authors would like to thank Helmholtz-Zentrum Berlin (HZB) for providing beamtime at BESSY II (Berlin, Germany), and Hilmar Adler, Elke Nadler, and Sergio Naselli for technical support. J. A. de S. is enrolled in the Materials Science PhD program of UAB. J. A. de S. thanks the Spanish Ministry for an FPI fellowship. This work was funded by the Spanish Ministry project FANCYCTQ2016-80030-R and GENESIS PID2019-111682RB-100, the Generalitat de Catalunya (2017SGR918) and the Spanish Ministry of Economy and Competitiveness, through the “Severo Ochoa” Programme for Centers of Excellence in R&D (SEV-2015-0496), the CSIC with the i-Link+ 2018 (Ref. LINKA20128) and CIBERBBN. Financial support from HZB and German Research Foundation (DFG) under the contract CA852/11-1 is gratefully acknowledged.Peer reviewe
    corecore