242 research outputs found
Neural correlates of finger gnosis
Neuropsychological studies have described patients with a selective impairment of finger identification in association with posterior parietal lesions. However, evidence of the role of these areas in finger gnosis from studies of the healthy human brain is still scarce. Here we used functional magnetic resonance imaging to identify the brain network engaged in a novel finger gnosis task, the intermanual in-between task (IIBT), in healthy participants. Several brain regions exhibited a stronger blood oxygenation level-dependent (BOLD) response in IIBT than in a control task that did not explicitly rely on finger gnosis but used identical stimuli and motor responses as the IIBT. The IIBT involved stronger signal in the left inferior parietal lobule (IPL), bilateral precuneus (PCN), bilateral premotor cortex, and left inferior frontal gyrus. In all regions, stimulation of nonhomologous fingers of the two hands elicited higher BOLD signal than stimulation of homologous fingers. Only in the left anteromedial IPL (a-mIPL) and left PCN did signal strength decrease parametrically from nonhomology, through partial homology, to total homology with stimulation delivered synchronously to the two hands. With asynchronous stimulation, the signal was stronger in the left a-mIPL than in any other region, possibly indicating retention of task-relevant information. We suggest that the left PCN may contribute a supporting visuospatial representation via its functional connection to the right PCN. The a-mIPL may instead provide the core substrate of an explicit bilateral body structure representation for the fingers that when disrupted can produce the typical symptoms of finger agnosia
A Perl procedure for protein identification by Peptide Mass Fingerprinting
<p>Abstract</p> <p>Background</p> <p>One of the topics of major interest in proteomics is protein identification. Protein identification can be achieved by analyzing the mass spectrum of a protein sample through different approaches. One of them, called Peptide Mass Fingerprinting (PMF), combines mass spectrometry (MS) data with searching strategies in a suitable database of known protein to provide a list of candidate proteins ranked by a score. To this aim, several algorithms and software tools have been proposed. However, the scoring methods and mainly the statistical evaluation of the results can be significantly improved.</p> <p>Results</p> <p>In this work, a Perl procedure for protein identification by PMF, called MsPI (Mass spectrometry Protein Identification), is presented. The implemented scoring methods were derived from the literature. MsPI implements a strategy to remove the contaminant masses present in the acquired spectra. Moreover, MsPI includes a statistical method to assign to each candidate protein, in addition to the scoring value, a p-value. Results obtained by MsPI on a dataset of 10 protein samples were compared with those achieved using two other software tools, i.e. Piums and Mascot. Piums implements one of the scoring methods available in MsPI, while Mascot is one of the most frequently used software tools in the protein identification field. MsPI scripts are available for downloading on the web site <url>http://aimed11.unipv.it/MsPI</url>.</p> <p>Conclusion</p> <p>The performances of MsPI seem to be better than those of Piums and Mascot. In fact, on the considered dataset, MsPI includes in its candidate proteins list, the "true" proteins nine times over ten, whereas Piums includes in its list the "true" proteins only four time over ten. Even if Mascot also correctly includes in the candidates list the "true" proteins nine times over ten, it provides longer candidate lists, therefore increasing the number of false positives when the molecular weight of the proteins in the sample is approximatively known (e.g. by the 1-D/2-D electrophoresis gel). Moreover, being MsPI a Perl tool, it can be easily extended and customized by the final users.</p
Expectancy to Eat Modulates Cognitive Control and Attention Toward Irrelevant Food and Non-food Images in Healthy Starving Individuals. A Behavioral Study
It is thought that just as hunger itself, the expectancy to eat impacts attention and cognitive control toward food stimuli, but this theory has not been extensively explored at a behavioral level. In order to study the effect of expectancy to eat on attentional and cognitive control mechanisms, 63 healthy fasting participants were presented with an affective priming spatial compatibility Simon task that included both food and object (non-food) distracters. The participants (N = 63) were randomly assigned to two groups: an “immediate expectancy” group made up of participants who expected to eat immediately after the task (N = 31; females = 21; age = 26.8 ± 9.6) and a “delayed expectancy” cohort made up of individuals who expected to eat a few hours later (N = 32; females = 21; age = 25.0 ± 8.0). Slower reaction times (RTs) toward the food and non-food distracters and a more pronounced effect on the RTs in the incompatible condition [i.e., the Simon effect (SE)] were noted in both groups. The effect of the food and non-food distracters on the RTs was more pronounced in the immediate with respect to the delayed expectancy group. The magnitude of the SE for the food and the non-food distracters was also greater in the immediate with respect to the delayed expectancy group. These results seem to indicate that when the expectancy to eat is short, the RTs are delayed, and the SE is more pronounced when food and non-food distracters are presented. Instead, when the expectancy to eat is more distant, the distracters have less of an effect on the RTs and the correspondence effect is smaller. Our results suggest that the expectancy to eat can modulate both attention orienting and cognitive control mechanisms in healthy fasting individuals when distracting details are competing with information processing during goal directed behavior
Moderators of the feature-positive effect in abstract hypothesis-evaluation tasks.
Three studies using abstract materials tested possible moderators of the feature-positive effect in hypothesis evaluation whereby people use the presence of features more than their absence to judge which of 2 competing hypotheses is more likely. Drawing on a distinction made in visual perception research, we tested whether the feature-positive effect emerges both when using nonsubstitutive features, which can be removed without replacement by other features, and substitutive features, the absence of which implies the presence of other features (e.g., the colour red, the absence of which entails the presence of another colour). Furthermore, we tested whether presenting to participants both the clue occurrence probabilities (which are needed to consider clue presence) and their complements (which are needed to gauge the impact of the absent clues) decreased the feature-positive effect. The results showed that regardless of the type of feature (i.e., nonsubstitutive vs. substitutive), participants provided more responses consistent with an evaluation of the subset of present clues compared to all other kinds of responses. However, the use of substitutive features combined with an explicit presentation format of probabilistic information had a debiasing effect. Furthermore, the use of substitutive features negated participant sensitivity to the rarity of clues, whereby the feature-positive effect decreased when there was one absent clue and two present clues for problems in which the exclusive consideration of the presence of features did not suggest the correct response
Simulating the development and progression of Chronic Kidney Disease and osteoporosis in people living with HIV
The "chronicization" of HIV infection brings about a growing necessity to attentively evaluate current and potential complications when prescribing the individual therapeutic regimen. Starting from this need, we developed two HIV-comorbidity simulators that, basing on the evidence available in medical literature and starting from the current clinical and demographic features of the individual patient, project and compare the risks of developing and worsening of nephropathy and osteopathy associated with possible ARV regimens. These simulators are embedded in a desktop, user-friendly software thought to be used by the treating physician during prescription discussion with his/her patients, in order to highlight expected clinical outcomes and healthcare resource consumption that may differ according to the therapeutic strategy selected. In this article we present the sources and methods used in developing the mathematical models, alongside a set of examples and the results of cohort-level validation runs
Issues in solid-organ transplantation in children: translational research from bench to bedside
In this review, we identify important challenges facing physicians responsible for renal and cardiac transplantation in children based on a review of the contemporary medical literature. Regarding pediatric renal transplantation, we discuss the challenge of antibody-mediated rejection, focusing on both acute and chronic antibody-mediated rejection. We review new diagnostic approaches to antibody-mediated rejection, such as panel-reactive antibodies, donor-specific cross-matching, antibody assays, risk assessment and diagnosis of antibody-mediated rejection, the pathology of antibody-mediated rejection, the issue of ABO incompatibility in renal transplantation, new therapies for antibody-mediated rejection, inhibiting of residual antibodies, the suppression or depletion of B-cells, genetic approaches to treating acute antibody-mediated rejection, and identifying future translational research directions in kidney transplantation in children. Regarding pediatric cardiac transplantation, we discuss the mechanisms of cardiac transplant rejection, including the role of endomyocardial biopsy in detecting graft rejection and the role of biomarkers in detecting cardiac graft rejection, including biomarkers of inflammation, cardiomyocyte injury, or stress. We review cardiac allograft vasculopathy. We also address the role of genetic analyses, including genome-wide association studies, gene expression profiling using entities such as AlloMap®, and adenosine triphosphate release as a measure of immune function using the Cylex® ImmuKnow™ cell function assay. Finally, we identify future translational research directions in heart transplantation in children
Differences in Presentation and Outcomes between Children with Familial Dilated Cardiomyopathy and Children with Idiopathic Dilated Cardiomyopathy: A Report from the Pediatric Cardiomyopathy Registry Study Group
Research comparing the survival of children with familial dilated cardiomyopathy (FDCM) to that of children with idiopathic dilated cardiomyopathy (IDCM) has produced conflicting results
The CUORE cryostat: an infrastructure for rare event searches at millikelvin temperatures
The CUORE experiment is the world's largest bolometric experiment. The
detector consists of an array of 988 TeO2 crystals, for a total mass of 742 kg.
CUORE is presently taking data at the Laboratori Nazionali del Gran Sasso,
Italy, searching for the neutrinoless double beta decay of 130Te. A large
custom cryogen-free cryostat allows reaching and maintaining a base temperature
of about 10 mK, required for the optimal operation of the detector. This
apparatus has been designed in order to achieve a low noise environment, with
minimal contribution to the radioactive background for the experiment. In this
paper, we present an overview of the CUORE cryostat, together with a
description of all its sub-systems, focusing on the solutions identified to
satisfy the stringent requirements. We briefly illustrate the various phases of
the cryostat commissioning and highlight the relevant steps and milestones
achieved each time. Finally, we describe the successful cooldown of CUORE
Characterization of integrated waveguides by atomic-force-microscopy-assisted mid-infrared imaging and spectroscopy
A novel spectroscopy technique to enable the rapid characterization of discrete mid-infrared integrated photonic waveguides is demonstrated. The technique utilizes lithography patterned polymer blocks that absorb light strongly within the molecular fingerprint region. These act as integrated waveguide detectors when combined with an atomic force microscope that measures the photothermal expansion when infrared light is guided to the block. As a proof of concept, the technique is used to experimentally characterize propagation loss and grating coupler response of Ge-on-Si waveguides at wavelengths from 6 to 10 µm. In addition, when the microscope is operated in scanning mode at fixed wavelength, the guided mode exiting the output facet is imaged with a lateral resolution better than 500 nm i.e. below the diffraction limit. The characterization technique can be applied to any mid-infrared waveguide platform and can provide non-destructive in-situ testing of discrete waveguide components
- …