422 research outputs found

    Food Chemistry: Experiments for Labs and Kitchens

    Get PDF
    A manual of kitchen experiments designed to demonstrate the chemical properties of foods and flavors, experienced through the human senses. We share this lab manual with you free of charge in light of the worldwide concerns of the novel coronavirus of 2019, and the COVID-19 disease outbreaks around the world in 2020. Please be warned, this manual is not “complete.” There will be typos. There will be errors. Some labs may not work perfectly. But, we hope you may find it useful—especially if your school was closed or you were quarantined/isolated for the sake of slowing the spread of this global virus. The only thing we ask in return is that you send us a message if you are able to use our experiments. This helps us demonstrate that our work had an effect, which is a key component of an academic career. Dr. Running’s email is: [email protected]. She can also provide instructors with data for analysis, and with the solution keys. Many thanks to Ms. Patsy Mellott, whose sponsorship of the Purdue College of Health and Human Sciences Patsy Mellott Teaching Innovation Award made the development of these labs possible

    Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data

    Get PDF
    A synergistic algorithm for producing global leaf area index and fraction of absorbed photosynthetically active radiation fields from canopy reflectance data measured by MODIS (moderate resolution imaging spectroradiometer) and MISR (multiangle imaging spectroradiometer) instruments aboard the EOS-AM 1 platform is described here. The proposed algorithm is based on a three-dimensional formulation of the radiative transfer process in vegetation canopies. It allows the use of information provided by MODIS (single angle and up to 7 shortwave spectral bands) and MISR (nine angles and four shortwave spectral bands) instruments within one algorithm. By accounting features specific to the problem of radiative transfer in plant canopies, powerful techniques developed in reactor theory and atmospheric physics are adapted to split a complicated three-dimensional radiative transfer problem into two independent, simpler subproblems, the solutions of which are stored in the form of a look-up table. The theoretical background required for the design of the synergistic algorithm is discussed

    Predicting Maximum Tree Heights and Other Traits from Allometric Scaling and Resource Limitations

    Get PDF
    Terrestrial vegetation plays a central role in regulating the carbon and water cycles, and adjusting planetary albedo. As such, a clear understanding and accurate characterization of vegetation dynamics is critical to understanding and modeling the broader climate system. Maximum tree height is an important feature of forest vegetation because it is directly related to the overall scale of many ecological and environmental quantities and is an important indicator for understanding several properties of plant communities, including total standing biomass and resource use. We present a model that predicts local maximal tree height across the entire continental United States, in good agreement with data. The model combines scaling laws, which encode the average, base-line behavior of many tree characteristics, with energy budgets constrained by local resource limitations, such as precipitation, temperature and solar radiation. In addition to predicting maximum tree height in an environment, our framework can be extended to predict how other tree traits, such as stomatal density, depend on these resource constraints. Furthermore, it offers predictions for the relationship between height and whole canopy albedo, which is important for understanding the Earth's radiative budget, a critical component of the climate system. Because our model focuses on dominant features, which are represented by a small set of mechanisms, it can be easily integrated into more complicated ecological or climate models.National Science Foundation (U.S.) (Research Experience for Undergraduates stipend)Gordon and Betty Moore FoundationNational Science Foundation (U.S.) (Graduate Research Fellowship Program)Massachusetts Institute of Technology. Presidential FellowshipEugene V. and Clare Thaw Charitable TrustEngineering and Physical Sciences Research CouncilNational Science Foundation (U.S.) (PHY0202180)Colorado College (Venture Grant Program

    The transition experience of rural older persons with advanced cancer and their families: a grounded theory study

    Get PDF
    BACKGROUND: Transitions often occur suddenly and can be traumatic to both patients with advanced disease and their families. The purpose of this study was to explore the transition experience of older rural persons with advanced cancer and their families from the perspective of palliative home care patients, bereaved family caregivers, and health care professionals. The specific aims were to: (1) describe the experience of significant transitions experienced by older rural persons who were receiving palliative home care and their families and (2) develop a substantive theory of transitions in this population. METHODS: Using a grounded theory approach, 27 open-ended individual audio-taped interviews were conducted with six older rural persons with advanced cancer and 10 bereaved family caregivers. Four focus group interviews were conducted with 12 palliative care health care professionals. All interviews were transcribed verbatim, coded, and analyzed using Charmaz\u27s constructivist grounded theory approach. RESULTS: Within a rural context of isolation, lack of information and limited accessibility to services, and values of individuality and community connectedness, older rural palliative patients and their families experienced multiple complex transitions in environment, roles/relationships, activities of daily living, and physical and mental health. Transitions disrupted the lives of palliative patients and their caregivers, resulting in distress and uncertainty. Rural palliative patients and their families adapted to transitions through the processes of Navigating Unknown Waters . This tentative theory includes processes of coming to terms with their situation, connecting, and redefining normal. Timely communication, provision of information and support networks facilitated the processes. CONCLUSION: The emerging theory provides a foundation for future research. Significant transitions identified in this study may serve as a focus for improving delivery of palliative and end of life care in rural areas. Improved understanding of the transitions experienced by advanced cancer palliative care patients and their families, as well as the psychological processes involved in adapting to the transitions, will help health care providers address the unique needs of this vulnerable population

    VEMAP Phase 2 Bioclimatic Database. I. Gridded Historical (20th century) Climate for Modeling Ecosystem Dynamics Across the Conterminous USA

    Get PDF
    Analysis and simulation of biospheric responses to historical forcing require surface climate data that capture those aspects of climate that control ecological processes, including key spatial gradients and modes of temporal variability. We developed a multivariate, gridded historical climate dataset for the conterminous USA as a common input database for the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP), a biogeochemical and dynamic vegetation model intercomparison. The dataset covers the period 1895-1993 on a 0.5° latitude/longitude grid. Climate is represented at both monthly and daily timesteps. Variables are: precipitation, mininimum and maximum temperature, total incident solar radiation, daylight-period irradiance, vapor pressure, and daylight-period relative humidity. The dataset was derived from US Historical Climate Network (HCN), cooperative network, and snowpack telemetry (SNOTEL) monthly precipitation and mean minimum and maximum temperature station data. We employed techniques that rely on geostatistical and physical relationships to create the temporally and spatially complete dataset. We developed a local kriging prediction model to infill discontinuous and limited-length station records based on spatial autocorrelation structure of climate anomalies. A spatial interpolation model (PRISM) that accounts for physiographic controls was used to grid the infilled monthly station data. We implemented a stochastic weather generator (modified WGEN) to disaggregate the gridded monthly series to dailies. Radiation and humidity variables were estimated from the dailies using a physically-based empirical surface climate model (MTCLIM3). Derived datasets include a 100 yr model spin-up climate and a historical Palmer Drought Severity Index (PDSI) dataset. The VEMAP dataset exhibits statistically significant trends in temperature, precipitation, solar radiation, vapor pressure, and PDSI for US National Assessment regions. The historical climate and companion datasets are available online at data archive centers

    Reconciling carbon-cycle concepts, terminology, and methods

    Get PDF
    Author Posting. © The Author(s), 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Ecosystems 9 (2006): 1041-1050, doi:10.1007/s10021-005-0105-7.Recent patterns and projections of climatic change have focused increased scientific and public attention on patterns of carbon (C) cycling and its controls, particularly the factors that determine whether an ecosystem is a net source or sink of atmospheric CO2. Net ecosystem production (NEP), a central concept in C-cycling research, has been used to represent two different concepts by C-cycling scientists. We propose that NEP be restricted to just one of its two original definitions—the imbalance between gross primary production (GPP) and ecosystem respiration (ER), and that a new term—net ecosystem carbon balance (NECB)—be applied to the net rate of C accumulation in (or loss from; negative sign) ecosystems. NECB differs from NEP when C fluxes other than C fixation and respiration occur or when inorganic C enters or leaves in dissolved form. These fluxes include leaching loss or lateral transfer of C from the ecosystem; emission of volatile organic C, methane, and carbon monoxide; and soot and CO2 from fire. C fluxes in addition to NEP are particularly important determinants of NECB over long time scales. However, even over short time scales, they are important in ecosystems such as streams, estuaries, wetlands, and cities. Recent technological advances have led to a diversity of approaches to measuring C fluxes at different temporal and spatial scales. These approaches frequently capture different components of NEP or NECB and can therefore be compared across scales only by carefully specifying the fluxes included in the measurements. By explicitly identifying the fluxes that comprise NECB and other components of the C cycle, such as net ecosystem exchange (NEE) and net biome production (NBP), we provide a less ambiguous framework for understanding and communicating recent changes in the global C cycle. Key words: Net ecosystem production, net ecosystem carbon balance, gross primary production, ecosystem respiration, autotrophic respiration, heterotrophic respiration, net ecosystem exchange, net biome production, net primary production

    Nutrients cause grassland biomass to outpace herbivory

    Get PDF
    Human activities are transforming grassland biomass via changing climate, elemental nutrients, and herbivory. Theory predicts that food-limited herbivores will consume any additional biomass stimulated by nutrient inputs ('consumer-controlled'). Alternatively, nutrient supply is predicted to increase biomass where herbivores alter community composition or are limited by factors other than food ('resource-controlled'). Using an experiment replicated in 58 grasslands spanning six continents, we show that nutrient addition and vertebrate herbivore exclusion each caused sustained increases in aboveground live biomass over a decade, but consumer control was weak. However, at sites with high vertebrate grazing intensity or domestic livestock, herbivores consumed the additional fertilization-induced biomass, supporting the consumer-controlled prediction. Herbivores most effectively reduced the additional live biomass at sites with low precipitation or high ambient soil nitrogen. Overall, these experimental results suggest that grassland biomass will outstrip wild herbivore control as human activities increase elemental nutrient supply, with widespread consequences for grazing and fire risk

    The potential for sand dams to increase the adaptive capacity of East African drylands to climate change

    Get PDF
    Drylands are home to more than two billion people and are characterised by frequent, severe droughts. Such extreme events are expected to be exacerbated in the near future by climate change. A potentially simple and cost-effective mitigation measure against drought periods is sand dams. This little-known technology aims to promote subsoil rainwater storage to support dryland agro-ecosystems. To date, there is little long-term empirical analysis that tests the effectiveness of this approach during droughts. This study addresses this shortcoming by utilising multi-year satellite imagery to monitor the effect of droughts at sand dam locations. A time series of satellite images was analysed to compare vegetation at sand dam sites and control sites over selected periods of drought, using the normalised difference vegetation index. The results show that vegetation biomass was consistently and significantly higher at sand dam sites during periods of extended droughts. It is also shown that vegetation at sand dam sites recovers more quickly from drought. The observed findings corroborate modelling-based research which identified related impacts on ground water, land cover, and socio-economic indicators. Using past periods of drought as an analogue to future climate change conditions, this study indicates that sand dams have potential to increase adaptive capacity and resilience to climate change in drylands. It therefore can be concluded that sand dams enhance the resilience of marginal environments and increase the adaptive capacity of drylands. Sand dams can therefore be a promising adaptation response to the impacts of future climate change on drylands

    Effects of watershed land use on nitrogen concentrations and δ15 Nitrogen in groundwater

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Biogeochemistry 77 (2006): 199-215, doi:10.1007/s10533-005-1036-2.Eutrophication is a major agent of change affecting freshwater, estuarine, and marine systems. It is largely driven by transportation of nitrogen from natural and anthropogenic sources. Research is needed to quantify this nitrogen delivery and to link the delivery to specific land-derived sources. In this study we measured nitrogen concentrations and δ15N values in seepage water entering three freshwater ponds and six estuaries on Cape Cod, Massachusetts and assessed how they varied with different types of land use. Nitrate concentrations and δ15N values in groundwater reflected land use in developed and pristine watersheds. In particular, watersheds with larger populations delivered larger nitrate loads with higher δ15N values to receiving waters. The enriched δ15N values confirmed nitrogen loading model results identifying wastewater contributions from septic tanks as the major N source. Furthermore, it was apparent that N coastal sources had a relatively larger impact on the N loads and isotopic signatures than did inland N sources further upstream in the watersheds. This finding suggests that management priorities could focus on coastal sources as a first course of action. This would require management constraints on a much smaller population.This work was supported by funds from the Woods Hole Oceanographic Institution Sea Grant Program, from the Cooperative Institute for Coastal and Estuarine Environmental Technology, from Massachusetts Department of Environmental Protection to Applied Science Associates, Narragansett, RI, as well as from Palmer/McLeod and NOAA National Estuarine Research Reserve Fellowships to Kevin Kroeger. This work is the result of research sponsored by NOAA National Sea Grant College Program Office, Department of Commerce, under Grant No. NA86RG0075, Woods Hole Oceanographic Institution Sea Grant Project No. R/M-40
    • …
    corecore