561 research outputs found

    Analyzing the Performance of Multilayer Neural Networks for Object Recognition

    Full text link
    In the last two years, convolutional neural networks (CNNs) have achieved an impressive suite of results on standard recognition datasets and tasks. CNN-based features seem poised to quickly replace engineered representations, such as SIFT and HOG. However, compared to SIFT and HOG, we understand much less about the nature of the features learned by large CNNs. In this paper, we experimentally probe several aspects of CNN feature learning in an attempt to help practitioners gain useful, evidence-backed intuitions about how to apply CNNs to computer vision problems.Comment: Published in European Conference on Computer Vision 2014 (ECCV-2014

    Contractive De-noising Auto-encoder

    Full text link
    Auto-encoder is a special kind of neural network based on reconstruction. De-noising auto-encoder (DAE) is an improved auto-encoder which is robust to the input by corrupting the original data first and then reconstructing the original input by minimizing the reconstruction error function. And contractive auto-encoder (CAE) is another kind of improved auto-encoder to learn robust feature by introducing the Frobenius norm of the Jacobean matrix of the learned feature with respect to the original input. In this paper, we combine de-noising auto-encoder and contractive auto- encoder, and propose another improved auto-encoder, contractive de-noising auto- encoder (CDAE), which is robust to both the original input and the learned feature. We stack CDAE to extract more abstract features and apply SVM for classification. The experiment result on benchmark dataset MNIST shows that our proposed CDAE performed better than both DAE and CAE, proving the effective of our method.Comment: Figures edite

    Learned-Norm Pooling for Deep Feedforward and Recurrent Neural Networks

    Full text link
    In this paper we propose and investigate a novel nonlinear unit, called LpL_p unit, for deep neural networks. The proposed LpL_p unit receives signals from several projections of a subset of units in the layer below and computes a normalized LpL_p norm. We notice two interesting interpretations of the LpL_p unit. First, the proposed unit can be understood as a generalization of a number of conventional pooling operators such as average, root-mean-square and max pooling widely used in, for instance, convolutional neural networks (CNN), HMAX models and neocognitrons. Furthermore, the LpL_p unit is, to a certain degree, similar to the recently proposed maxout unit (Goodfellow et al., 2013) which achieved the state-of-the-art object recognition results on a number of benchmark datasets. Secondly, we provide a geometrical interpretation of the activation function based on which we argue that the LpL_p unit is more efficient at representing complex, nonlinear separating boundaries. Each LpL_p unit defines a superelliptic boundary, with its exact shape defined by the order pp. We claim that this makes it possible to model arbitrarily shaped, curved boundaries more efficiently by combining a few LpL_p units of different orders. This insight justifies the need for learning different orders for each unit in the model. We empirically evaluate the proposed LpL_p units on a number of datasets and show that multilayer perceptrons (MLP) consisting of the LpL_p units achieve the state-of-the-art results on a number of benchmark datasets. Furthermore, we evaluate the proposed LpL_p unit on the recently proposed deep recurrent neural networks (RNN).Comment: ECML/PKDD 201

    Recurrent Latent Variable Networks for Session-Based Recommendation

    Full text link
    In this work, we attempt to ameliorate the impact of data sparsity in the context of session-based recommendation. Specifically, we seek to devise a machine learning mechanism capable of extracting subtle and complex underlying temporal dynamics in the observed session data, so as to inform the recommendation algorithm. To this end, we improve upon systems that utilize deep learning techniques with recurrently connected units; we do so by adopting concepts from the field of Bayesian statistics, namely variational inference. Our proposed approach consists in treating the network recurrent units as stochastic latent variables with a prior distribution imposed over them. On this basis, we proceed to infer corresponding posteriors; these can be used for prediction and recommendation generation, in a way that accounts for the uncertainty in the available sparse training data. To allow for our approach to easily scale to large real-world datasets, we perform inference under an approximate amortized variational inference (AVI) setup, whereby the learned posteriors are parameterized via (conventional) neural networks. We perform an extensive experimental evaluation of our approach using challenging benchmark datasets, and illustrate its superiority over existing state-of-the-art techniques

    3D freeform surfaces from planar sketches using neural networks

    Get PDF
    A novel intelligent approach into 3D freeform surface reconstruction from planar sketches is proposed. A multilayer perceptron (MLP) neural network is employed to induce 3D freeform surfaces from planar freehand curves. Planar curves were used to represent the boundaries of a freeform surface patch. The curves were varied iteratively and sampled to produce training data to train and test the neural network. The obtained results demonstrate that the network successfully learned the inverse-projection map and correctly inferred the respective surfaces from fresh curves

    A Neural Networks Committee for the Contextual Bandit Problem

    Get PDF
    This paper presents a new contextual bandit algorithm, NeuralBandit, which does not need hypothesis on stationarity of contexts and rewards. Several neural networks are trained to modelize the value of rewards knowing the context. Two variants, based on multi-experts approach, are proposed to choose online the parameters of multi-layer perceptrons. The proposed algorithms are successfully tested on a large dataset with and without stationarity of rewards.Comment: 21st International Conference on Neural Information Processin

    Soft Computing Models for the Development of Commercial Conversational Agents

    Get PDF
    Proceedings of: 6th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2011). Salamanca, April 6-8, 2011In this paper we present a proposal for the development of conversational agents that, on the one hand, takes into account the benefits of using standards like VoiceXML, whilst on the other, includes a module with a soft computing model that avoids the effort of manually defining the dialog strategy. This module is trained using a labeled dialog corpus, and selects the next system response considering a classification process based on neural networks that takes into account the dialog history. Thus, system developers only need to define a set of VoiceXML files, each including a system prompt and the associated grammar to recognize the users responses to the prompt. We have applied this technique to develop a conversational agent in VoiceXML that provides railway information in Spanish.Funded by projects CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732-C02- 02/TEC, CAM CONTEXTS (S2009/TIC-1485), and DPS2008-07029-C02-02.Publicad

    Understanding person acquisition using an interactive activation and competition network

    No full text
    Face perception is one of the most developed visual skills that humans display, and recent work has attempted to examine the mechanisms involved in face perception through noting how neural networks achieve the same performance. The purpose of the present paper is to extend this approach to look not just at human face recognition, but also at human face acquisition. Experiment 1 presents empirical data to describe the acquisition over time of appropriate representations for newly encountered faces. These results are compared with those of Simulation 1, in which a modified IAC network capable of modelling the acquisition process is generated. Experiment 2 and Simulation 2 explore the mechanisms of learning further, and it is demonstrated that the acquisition of a set of associated new facts is easier than the acquisition of individual facts in isolation of one another. This is explained in terms of the advantage gained from additional inputs and mutual reinforcement of developing links within an interactive neural network system. <br/
    corecore