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Soft Computing Models for the Development of 
Commercial Conversational Agents

David Griol, Javier Carbó, and José Manuel Molina

Abstract. In this paper we present a proposal for the development of conversational
agents that, on the one hand, takes into account the benefits of using standards like
VoiceXML, whilst on the other, includes a module with a soft computing model that
avoids the effort of manually defining the dialog strategy. This module is trained
using a labeled dialog corpus, and selects the next system response considering a
classification process based on neural networks that takes into account the dialog
history. Thus, system developers only need to define a set of VoiceXML files, each
including a system prompt and the associated grammar to recognize the users re-
sponses to the prompt. We have applied this technique to develop a conversational
agent in VoiceXML that provides railway information in Spanish.

1 Introduction

A conversational agent can be defined as a software that accepts natural language
as input and generates natural language as output, engaging in a conversation with
the user. When designing this kind of agents, developers need to specify the system
actions in response to user utterances and environmental states that, for example, can
be based on observed or inferred events or beliefs. In addition, the dialog manager
needs a dialog strategy that defines the conversational behavior of the system. This is
the fundamental task of dialog management [11], as the performance of the system
is highly dependent on the quality of this strategy. Thus, a great effort is employed
to empirically design dialog strategies for commercial systems. In fact, the design
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of a good strategy is far from being a trivial task since there is no clear definition of
what constitutes a good strategy [15].

Once the dialog strategy has been designed, the implementation of the system is
leveraged by programming languages such as the standard VoiceXML1, for which
different programming environments and tools have been created to help develop-
ers. These programming standards allow the definition of a dialog strategy based
on scripted Finite State Machines. With the aim of creating dynamic and adapted
dialogs, as an alternative of the previously described rule-based approaches, the ap-
plication of soft computing models and statistical approaches to dialog management
makes it possible to consider a wider space of dialog strategies [4, 16, 6]. The main
reason is that these models can be trained from real dialogs, modeling the variability
in user behaviors. The final objective is to develop conversational agents that have a
more robust behavior and are easier to adapt to different user profiles or tasks.

The most extended methodology for machine-learning of dialog strategies con-
sists of modeling human-computer interaction as an optimization problem using
Markov Decision Process (MDP) and reinforcement methods [8]. The main draw-
back of this approach is due to the large state space of practical spoken dialog
systems, whose representation is intractable if represented directly [17]. Partially
Observable MDPs (POMDPs) outperform MDP-based dialog strategies since they
provide an explicit representation of uncertainty [13]. However, they are limited to
small-scale problems, since the state space would be huge and exact POMDP opti-
mization is again intractable [17]. Other interesting approaches for statistical dialog
management are based on modeling the system by means of Hidden Markov Models
(HMMs) [1] or using Bayesian networks [10].

Additionally, speech recognition grammars for commercial systems have been
usually built on the basis of handcrafted rules that are tested recursively, which in
complex applications is very costly [9]. However, as stated by [12], many sophisti-
cated commercial systems already available receive a large volume of interactions.
Therefore, industry is becoming more interested in substituting rule based grammars
with other soft computing techniques based on the large amounts of data available.

As an attempt to improve the current technology, we propose to merge soft com-
puting models with VoiceXML. Our goal is to combine the flexibility of statisti-
cal dialog management with the facilities that VoiceXML offers, which would help
to introduce soft computing models for the development of commercial (and not
strictly academic) conversational agents. To this end, our technique employs a soft
computing model based on neural networks that takes into account the history of
the dialog up to the current dialog state in order to predict the next system response.
The soft computing model is learned from a labeled training corpus for the task and
is mainly based on the modelization of the sequences of the system and user dialog
acts and the definition of a data structure, which takes into account the data sup-
plied by the user throughout the dialog, and makes the estimation of the model from
the training data manageable. Expert knowledge about deployment of VoiceXML
applications, development environments and tools can still be exploited using our

1 http://www.w3.org/TR/voicexml20/
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technique. The only change is that transitions between dialog states is carried out
on a data-driven basis (i.e., is not deterministic). In addition, the system prompts
and the grammars for ASR are implemented in VoiceXML-compliant formats (e.g.,
JSGF or SRGS).

The remainder of the paper is as follows. Section 2 describes our proposal to
model the dialog and develop a module to predict the next system response based
on a soft computing model. Section 3 presents a detailed explanation of how to
construct this module to develop a commercial railway information conversational
agent, and the results of its evaluation. Finally, our conclusions are presented.

2 Our Proposal to Introduce Soft Computing Models in
Commercial Conversational Agents

As stated in the introduction, our approach to integrate soft computing methodolo-
gies in commercial applications is based on the automatic learning of the dialog
strategy using a soft computing dialog management methodology. In most conver-
sational agents, the dialog manager makes decisions based only on the information
provided by the user in the previous turns and its own dialog model. For example,
this is the case with most conversational agents for slot-filling tasks. The method-
ology that we propose for the selection of the next system response for this kind
of task is detailed in [5]. We represent the dialogs as a sequence of pairs (Ai, Ui),
where Ai is the output of the dialog system (the system answer) at time i, expressed
in terms of dialog acts; and Ui is the semantic representation of the user turn (the
result of the understanding process of the user input) at time i, expressed in terms of
frames. This way, each dialog is represented by:

(A1,U1), · · · ,(Ai,Ui), · · · ,(An,Un)

where A1 is the greeting turn of the system, and Un is the last user turn. From now
on, we refer to a pair (Ai,Ui) as Si, the state of the dialog sequence at time i.

In this framework, we consider that, at time i, the objective of the dialog manager
is to find the best system answer Ai. This selection is a local process for each time i
and takes into account the previous history of the dialog, that is to say, the sequence
of states of the dialog preceding time i:

Âi = argmax
Ai∈A

P(Ai|S1, · · · ,Si−1)

where set A contains all the possible system answers.
The main problem with dealing to resolve the latter equation is regarding the

number of all possible sequences of states, which is usually very large in a practical
domain. To solve this problem, we define a data structure in order to establish a
partition in the space of sequences of states (i.e., in the history of the dialog pre-
ceding time i). This data structure, that we call Dialog Register (DR), contains the
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information provided by the user throughout the previous history of the dialog. After
applying the above considerations and establishing the equivalence relation in the
histories of dialogs, the selection of the best Ai is given by:

Âi = argmax
Ai∈A

P(Ai|DRi−1,Si−1)

Each user turn supplies the system with information about the task; that is, he/she
asks for a specific concept and/or provides specific values for certain attributes.
However, a user turn could also provide other kinds of information, such as task-
independent information (for instance, Affirmation, Negation, and Not-Understood
dialog acts). This kind of information implies some decisions which are different
from simply updating the DRi−1. Hence, for the selection of the best system re-
sponse Ai, we take into account the DR that results from turn 1 to turn i− 1, and
we explicitly consider the last state Si−1. Our model can be extended by incorpo-
rating additional information to the DR, such as some chronological information
(e.g. number of turns up to the current turn) or user profiles (e.g. user experience or
preferences).

2.1 Soft Computing Approach Proposed for the Implementation
of the Dialog Manager

We propose to solve the latter equation by means of a classification process. This
way, every dialog situation (i.e., each possible sequence of dialog acts) is classified
taking into a set of classes C , which groups together all the sequences that provide
the same set of system actions (answers). Thus, the objective of the dialog manager
at each moment is to select a class of this set c ∈ C , and the answer of the system at
that moment is the answer associated with this selected class.

The classification function can be defined in several ways. We have evaluated
four different definitions of such a function: a multinomial naive Bayes classifier,
n-gram based classifier, a classifier based on grammatical inference techniques and
a classifier based on neural networks [5]. An approach that uses Support Vector
Machines for the classification process can be found in [2].

The best results were obtained using a multilayer perceptron (MLP) [14] where
the input layer holds the input pair (DRi−1,Si−1) corresponding to the dialog register
and the state. The values of the output layer can be seen as an approximation of the
a posteriori probability of belonging to the associated class c ∈ C .

As stated before, the DR contains information about concepts and attributes pro-
vided by the user throughout the previous history of the dialog. For the dialog man-
ager to determine the next answer, we have assumed that the exact values of the
attributes are not significant. They are important for accessing the databases and for
constructing the output sentences of the system. However, the only information nec-
essary to predict the next action by the system is the presence or absence of concepts
and attributes. Therefore, the information we used from the DR is a codification of
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this data in terms of three values, {0,1,2}, for each field in the DR according to the
following criteria:

• 0: The concept is unknown or the value of the attribute is not given.
• 1: The concept or attribute is known with a confidence score that is higher than

a given threshold. Confidence scores are given during the recognition and under-
standing processes. and can be increased by means of confirmation turns.

• 2: The concept or attribute is activated with a confidence score that is lower than
the given threshold.

3 Development of a Railway Information System Using the
Proposed Technique

To test our proposal, we have used the definitions taken to develop the EDECAN di-
alog system, which was developed in a previous study to provide information about
train services, schedules and fares in Spanish [6, 5]. A corpus of 900 dialogs was
acquired for this project. In this corpus, the system generates a total of 51 different
prompts, which were labeled taking into account three levels of labeling defined for
the labeling of the system dialog acts. The first level describes general acts which
are task independent. The second level is used to represent concepts and attributes
involved in dialog turns that are task-dependent. The third level represents values
of attributes given in the turns. The following labels were defined for the first level:
Opening, Closing, Undefined, Not-Understood, Waiting, New-Query, Acceptance,
Rejection, Question, Confirmation, and Answer. The labels defined for the second
and third level were the following: Departure-Hour, Arrival-Hour, Price, Train-
Type, Origin, Destination, Date, Order-Number, Number-Trains, Services, Class,
Trip-Type, Trip-Time, and Nil. The 51 different system prompts have been automat-
ically generated in VoiceXML using the proposed technique. For example, Figure 1
shows the VXML document to prompt the user for the origin city and the obtained
grammar for ASR.

The DR that we have defined for our railway information system is a se-
quence of 15 fields, corresponding to the five possible queries that users can
carry out to the system (Hour, Price, Train-Type, Trip-Time, Services) and the ten
attributes that they can provide to complete these queries (Origin, Destination,
Departure-Date, Arrival-Date, Departure-Hour, Arrival-Hour, Class, Train-Type,
Order-Number, Services).

This way, every dialog begins with a dialog register in which every value is equal
to 0 and the greeting turn of the system, as it is showed following.
. . . . . . . . .
S1: Welcome to the railway information system. How can I help you?
A1: (Opening:Nil:Nil)
DR0: 00000-1000001000
. . . . . . . . .
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<?xml version="1.0" encoding="UTF-8"?>
<vxml xmlns="http://www.w3.org/2001/vxml"

xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
xsi:schemaLocation="http://www.w3.org/2001/vxml
http://www.w3.org/TR/voicexml20/vxml.xsd"
version="2.0" application="app-trains.vxml">

<form id="origin_form">
<field name="origin">

<grammar type="application/srgs+xml"
src="/grammars/origin.grxml"/>

<prompt>Tell me the origin city.</prompt>
<filled>

<return namelist="origin"/>
</filled>

</field>
</form>

</vxml>

#JSGF V1.0;
grammar origin;
public <origin> = [<desire>]
[<travel> <city> {this.destination=$city}]
[<proceed> <city> {this.origin=$city}];
<desire> = I want [to know] | I would like
[to know] | I would like | I want | I need
| I have to;
<travel> = go to | travel to | to go to
| to travel to;
<city> = Murcia | Vigo | Sevilla | Huelva |
Cuenca | Lugo | Granada | Salamanca |
Valencia | Alicante | Albacete | Barcelona
| Madrid;
<proceed> = from | going from | go from;

Fig. 1 VoiceXML document to require the origin city (left) and grammar to capture the as-
sociated value (right)

Each time the user provides information, this is used to update the previous DR
and to obtain the new one. For instance, given a user turn providing the origin city,
the destination city and the date, the new dialog register could be as follows.
. . . . . . . . .

U1: I want to know timetables from Valencia to Madrid.
Task Dependent Information: (Hour) [0.7] Origin:Valencia [0.2] Destination:Madrid [0.9]
Task Independent Information: None
DR1: 10000-2100000000
. . . . . . . . .

In this case, the confidence score assigned to the attribute Origin (showed between
brackets in the previous example) is very low. Then, a “2” value is added in the cor-
responding position of the DR1. The concept (Hour) and the attribute Destination
are recognized with a high confidence score, adding a “1” value in the correspond-
ing positions of the DR1. Then, the input of the MLP is generated using DR1, the
codification of the labeling of the last system turn (A1), and the task-independent
information provided in the last user turn (none in this case). The output selected
for the MLP would consist in the case of requiring the departure date. This process
is repeated to predict the next system response afterwards each user turn.

4 Evaluation of the Developed Conversational Agent

A 5-fold cross-validation process was used to carry out the evaluation of the devel-
oped conversational agent. This way, the corpus containing 900 dialogs from the
railway information domain was randomly split into five subsets of 1,232 samples
(20% of the corpus). Our experiment consisted of five trials. Each trial used a differ-
ent subset taken from the five subsets as the test set, and the remaining 80% of the
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corpus was used as the training set. A validation subset (20%) was extracted from
each training set.

In order to successfully use neural networks as classifiers, a number of consid-
erations had to be taken into account, such as the network topology, the training
algorithm, and the selection of the parameters of the algorithm. Using April, topol-
ogy and algorithm parameters (i.e. learning rate and momentum) are estimated with
an exhaustive search, using as stop criteria the MSE obtained in each epoch for the
validation set. The gradient is computed in incremental mode, this way the weights
are updated after each input, also a momentum is added to the backpropagation so
that the networks can overcome local minimums. Different experiments were con-
ducted using different network topologies of increasing number of weights: a hidden
layer with 2 units, two hidden layers of 2 units each, two hidden layers of 4 and 2
units, a hidden layer with 4 units, etc. Several learning algorithms were also tested:
the incremental version of the backpropagation algorithm (with and without mo-
mentum term) and the quickprop algorithm. The influence of their parameters such
as learning rate or momentum term was also studied.

To train and evaluate the neural networks, we used the April toolkit, developed by
the Technical University of Valencia [3]. April is an efficient implementation of the
Backpropagation (BP) algorithm to train neural networks with general feedforward
topology. April employes Lua [7], an extensible procedural embedded programming
language especially designed for extending and customizing applications with pow-
erful data description facilities. In our case, we have used it to describe the network
topologies and the experiments. Besides, April adds a matrix and a dataset class
which allow the straightforward definition and manipulation of huge sets of sam-
ples more flexibly than simply enumerating the pairs of inputs and outputs. The
toolkit also includes additional features like softmax activation function, tied and
constant weights, weight decay, value representation, and reproducibility of experi-
ments. The Appendix section shows an excerpt from the script used to train and test
our topologies with the April toolkit.

We firstly tested the influence of the topology of the MLP, by training different
MLPs of increasing number of weights using the standard backpropagation algo-
rithm (with a sigmoid activation function and a learning rate equal to 0.2), and
selecting the best topology according to the mean square error (MSE) of the val-
idation data. The minimum MSE of the validation data was achieved using an MLP
of one hidden layer of 32 units. We followed our experimentation with MLPs of
this topology, training MLPs with several algorithms: the incremental version of the
backpropagation algorithm (with and without momentum term) and the quickprop
algorithm. The best result on the validation data was obtained using the MLP trained
with the standard backpropagation algorithm and a value of LR equal to 0.3.

We propose three measures to evaluate the prediction of the next system prompt
by the soft computing methodology. These measures are calculated by comparing
the answer automatically generated by this module for each input in the test par-
tition with regard to the reference answer annotated in the evaluation corpus. This
way, the evaluation is carried out turn by turn. These three measures are: i) %exact:
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percentage of answers provided by the dialog manager that are equal to the reference
system answer in the corpus; ii) %coherent: percentage of answers provided by the
dialog manager that are coherent with the current state of the dialog although they
do not follow the original strategy; iii) %error: percentage of answers provided by
the dialog manager that would cause a dialog failure. Table 1 shows the results of
the evaluation.

Table 1 Evaluation results obtained with the dialog manager developed for the railway con-
versational agent

%exact %coherent %error
System answer 84.11% 93.76% 4.24%

The results of the %exact and %coherent measures show the satisfactory per-
formance of the developed dialog manager. The codification defined to represent
the state of the dialog and the good operation of the MLP classifier make it pos-
sible for the answer generated by the manager to agree with exactly the reference
response in the corpus in 84.11% of cases. The percentage of answers generated
by the MLP that can cause a system failure is only 4.24%. Finally, an answer that
is coherent with the current state of the dialog is generated in 93.76% of cases.
These results also demonstrate the correct operation of the proposed soft computing
methodology.

5 Conclusions

In this paper, we have described a technique for developing interactive conversa-
tional agents using a well known standard like VoiceXML, and considering a soft
computing dialog model that is automatically learned from a dialog corpus. The
main objective of our work is to reduce the gap between academic and commercial
systems by reducing the effort required to define optimal dialog strategies and im-
plement the system. Our proposal works on the benefits of statistical methods for
dialog management and VoiceXML, respectively. The former provide an efficient
means to exploring a wider range of dialog strategies, whereas the latter makes it
possible to benefit from the advantages of using the different tools and platforms
that are already available to simplify system development.

We have applied our technique to develop a conversational agent that pro-
vides railway information, and have shown that it enables creating automatically
VoiceXML documents to prompt the user for data, as well as the necessary gram-
mars for ASR. The results of its evaluation shows the prediction of a coherent system
answer in most of the cases. As a future work, we plan to study ways for adapting
the proposed soft computing model to more complex domains and corpora.
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Appendix: Training and Testing a MLP with the April Toolkit

-----------------------------------------------------------
-- READING DATA FROM FILES
-----------------------------------------------------------
train_input, train_output = read_file("train.txt")
test_input, test_output, d_output = read_file("test.txt")
-----------------------------------------------------------
-- PARAMETERS DEFINITION
-----------------------------------------------------------
num_hidden1 = 110
num_hidden2 = 110
defined_learning_rate = 0.03
defined_momentum = 0.02
weight_decay = 0.0
seed_network = 123
seed_shuffle = 456
num_train = 100
-----------------------------------------------------------
-- NEURAL NETWORK CREATION
-----------------------------------------------------------
num_inputs = train_input:patternSize()
num_outputs = numclasses
rand1 = random(seed_network)
rand2 = random(seed_shuffle)
if num_hidden2 == 0 then
stringnetwork = string.format("%d inputs %d logistic %d softmax",

num_inputs, num_hidden1, num_outputs)
else
stringnetwork = string.format("%d inputs %d logistic %d logistic %d softmax",

num_inputs,num_hidden1, num_hidden2, num_outputs)
end

printf("# Neural network with topology: %s\n",networkstring)
printf("# Data test with %d patterns\n",test_input:numPatterns())
Neuralnetwork = Mlp(stringnetwork)
Neuralnetwork :generate(rand1, -0.7, 0.7) -- generates weights of the network

datatrain = {
learning_rate = defined_learning_rate,
momentum = defined_momentum,
weight_decay = weight_decay,
input_dataset = train_input,
output_dataset = train_output,
shuffle = rand2

}
datatest = {

input_dataset = test_input,
output_dataset = test_output,

}
-----------------------------------------------------------
-- TRAINING AND SAVING THE NEURAL NETWORK
-----------------------------------------------------------
printf("# epoch mse_train mse_test\n")
for epoch = 1,num_train do
errortrain = MLP:train(datatrain)
errortest = MLP:validate(datatest)

end
Neuralnetwork:save("neuralnetwork_top1.txt")
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