14 research outputs found

    The development of poly-L-arginine-coated liposomes for gene delivery

    No full text
    Praneet Opanasopit1, Jintana Tragulpakseerojn1, Auayporn Apirakaramwong1, Tanasait Ngawhirunpat1, Theerasak Rojanarata1, Uracha Ruktanonchai21Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; 2National Nanotechnology Center, Thailand Science Park, Pathumthani, Thailand Abstract: In this study, liposomes coated with cationic polymers, poly-L-arginine (PLA), were assessed as a promising gene transfer system in human cervical carcinoma (HeLa) cells and human hepatoma cell line (Huh7) cells. The liposomes were prepared using egg yolk phosphatidylcholine and sodium oleate in the molar ratio of 10:2 with an ultrasonic generator and then coated with PLA. The PLA-coated liposomes (PCLs) formed complexes with plasmid DNA encoding green fluorescent protein. The complexes were characterized by agarose gel electrophoresis and investigated for their transfection efficiency in HeLa and Huh7 cells. The data were compared with PLA/DNA complexes and the positive control Lipofectamine 2000TM. The results showed that complete PCL/DNA complexes were formed at weight ratios of more than 0.05. Efficient gene transfer by PCLs was dependent on the cell type. The transfection efficiency of PCLs was about two times higher than that of PLA/DNA complexes in both HeLa cells and Huh7 cells. Cytotoxicity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and showed that 80%-100% of both of the cells were viable after treating PCL/DNA complexes. The present results demonstrate that PCLs are a promising, nonviral gene carrier with low toxicity.Keywords: PLA-coated liposomes, PLA, gene delivery, transfection efficiency&nbsp

    Place-based attributes predict community membership in a mobile phone communication network.

    Get PDF
    Social networks can be organized into communities of closely connected nodes, a property known as modularity. Because diseases, information, and behaviors spread faster within communities than between communities, understanding modularity has broad implications for public policy, epidemiology and the social sciences. Explanations for community formation in social networks often incorporate the attributes of individual people, such as gender, ethnicity or shared activities. High modularity is also a property of large-scale social networks, where each node represents a population of individuals at a location, such as call flow between mobile phone towers. However, whether or not place-based attributes, including land cover and economic activity, can predict community membership for network nodes in large-scale networks remains unknown. We describe the pattern of modularity in a mobile phone communication network in the Dominican Republic, and use a linear discriminant analysis (LDA) to determine whether geographic context can explain community membership. Our results demonstrate that place-based attributes, including sugar cane production, urbanization, distance to the nearest airport, and wealth, correctly predicted community membership for over 70% of mobile phone towers. We observed a strongly positive correlation (r?=?0.97) between the modularity score and the predictive ability of the LDA, suggesting that place-based attributes can accurately represent the processes driving modularity. In the absence of social network data, the methods we present can be used to predict community membership over large scales using solely place-based attributes

    Recasting the theory of mosquito-borne pathogen transmission dynamics and control

    Get PDF
    Mosquito-borne diseases pose some of the greatest challenges in public health, especially in tropical and sub-tropical regions of theworld. Efforts to control these diseases have been underpinned by a theoretical framework developed for malaria by Ross and Macdonald, including models, metrics for measuring transmission, and theory of control that identifies key vulnerabilities in the transmission cycle. That framework, especially Macdonald’s formula for R0 and its entomological derivative, vectorial capacity, are nowused to study dynamics and design interventions for many mosquito-borne diseases. A systematic review of 388 models published between 1970 and 2010 found that the vast majority adopted the Ross–Macdonald assumption of homogeneous transmission in a well-mixed population. Studies comparing models and data question these assumptions and point to the capacity to model heterogeneous, focal transmission as the most important but relatively unexplored component in current theory. Fine-scale heterogeneity causes transmission dynamics to be nonlinear, and poses problems for modeling, epidemiology and measurement. Novel mathematical approaches show how heterogeneity arises from the biology and the landscape on which the processes of mosquito biting and pathogen transmission unfold. Emerging theory focuses attention on the ecological and social context formosquito blood feeding, themovement of both hosts and mosquitoes, and the relevant spatial scales for measuring transmission and for modeling dynamics and control

    A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970-2010

    Get PDF
    Mathematical models of mosquito-borne pathogen transmission originated in the early twentieth century to provide insights into how to most effectively combat malaria. The foundations of the Ross–Macdonald theory were established by 1970. Since then, there has been a growing interest in reducing the public health burden of mosquito-borne pathogens and an expanding use of models to guide their control. To assess how theory has changed to confront evolving public health challenges, we compiled a bibliography of 325 publications from 1970 through 2010 that included at least one mathematical model of mosquito-borne pathogen transmission and then used a 79-part questionnaire to classify each of 388 associated models according to its biological assumptions. As a composite measure to interpret the multidimensional results of our survey, we assigned a numerical value to each model that measured its similarity to 15 core assumptions of the Ross–Macdonald model. Although the analysis illustrated a growing acknowledgement of geographical, ecological and epidemiological complexities in modelling transmission, most models during the past 40 years closely resemble the Ross–Macdonald model. Modern theory would benefit from an expansion around the concepts of heterogeneous mosquito biting, poorly mixed mosquito-host encounters, spatial heterogeneity and temporal variation in the transmission process

    In Vitro Characterization and Mosquito (Aedes aegypti) Repellent Activity of Essential-Oils-Loaded Nanoemulsions

    No full text
    The nanoemulsions composed of citronella oil, hairy basil oil, and vetiver oil with mean droplet sizes ranging from 150 to 220 nm were prepared and investigated both in vitro and in vivo. Larger emulsion droplets (195–220 nm) shifted toward a smaller size (150–160 nm) after high-pressure homogenization and resulted in higher release rate. We proposed that thin films obtained from the nanoemulsions with smaller droplet size would have higher integrity, thus increasing the vaporization of essential oils and subsequently prolonging the mosquito repellant activity. The release rates were fitted with Avrami’s equations and n values were in the same range of 0.6 to 1.0, implying that the release of encapsulated limonene was controlled by the diffusion mechanism from the emulsion droplet. By using high-pressure homogenization together with optimum concentrations of 5% (w/w) hairy basil oil, 5% (w/w) vetiver oil (5%), and 10% (w/w) citronella oil could improve physical stability and prolong mosquito protection time to 4.7 h due to the combination of these three essential oils as well as small droplet size of nanoemulsion

    Physicochemical Characteristics, Cytotoxicity, and Antioxidant Activity of Three Lipid Nanoparticulate Formulations of Alpha-lipoic Acid

    No full text
    Exogenously supplied alpha-lipoic acid (LA) has proven to be effective as an antioxidant. In an effort to develop a water-soluble formulation for topical administration, LA was formulated in the form of solid lipid nanoparticles (SLN), nanostructure lipid carriers (NLC), and nanoemulsion (NE) and characterized in terms of physical and biological properties. Mean particle size of 113, 110, and 121 nm were obtained for NE, NLC, and SLN, respectively, with narrow size distribution. Zeta potential was approximately in the range of −25 to −40 mV. Disc and spherical structures of nanoparticles were observed by cryo-scanning electron microscopy. Entrapment efficiency of LA in three formulations was found to be more than 70%. After 120 days of storage at 25°C, physical stability of all formulations remained unchanged whereas the entrapment efficiency of SLN and NLC could be maintained, suggesting relative long-term stability. Prolonged release of LA formulation following the Higuchi model was found where a faster release was observed from NE compared with that of SLN and NLC. More than 80% of cell survivals were found up to 1 ΌM of LA concentrations. Antioxidant activity analysis demonstrated that all LA-loaded formulations expressed antioxidant activity at a similar magnitude as pure LA. These results suggest that chosen compositions of lipid nanoparticles play an important role on drug loading, stability, and biological activity of nanoparticles. Both SLN and NLC demonstrated their potential as alternative carriers for aqueous topical administration of LA
    corecore