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Mosquito‐borne	diseases	pose	some	of	the	greatest	challenges	in	public	health,	49	
especially	in	tropical	and	sub‐tropical	regions	of	the	world.	Efforts	to	control	these	50	
diseases	have	been	underpinned	by	a	theoretical	framework	developed	for	malaria	51	
by	Ross	and	Macdonald	(1),	including	models,	metrics	for	measuring	transmission,	52	
and	theory	of	control	that	identifies	key	vulnerabilities	in	the	transmission	cycle.	53	

That	framework,	especially	Macdonald’s	formula	for R
0
,and	its	entomological	54	

derivative,	vectorial	capacity,	are	now	used	to	study	dynamics	and	design	55	
interventions	for	many	mosquito‐borne	diseases.	A	systematic	review	of	388	models	56	
published	between	1970	and	2010	found	that	the	vast	majority	adopted	the	Ross‐57	
Macdonald	assumption	of	homogeneous	transmission	in	a	well‐mixed	population	58	
(2).	Studies	comparing	models	and	data	question	these	assumptions	and	point	to	the	59	
capacity	to	model	heterogeneous,	focal	transmission	as	the	most	important	but	60	
relatively	unexplored	component	in	current	theory.	Fine‐scale	heterogeneity	causes	61	
transmission	dynamics	to	be	nonlinear,	and	poses	problems	for	modeling,	62	
epidemiology	and	measurement.	Novel	mathematical	approaches	show	how	63	
heterogeneity	arises	from	the	biology	and	the	landscape	on	which	the	processes	of	64	
mosquito	biting	and	pathogen	transmission	unfold	(3).	Emerging	theory	focuses	65	
attention	on	the	ecological	and	social	context	for	mosquito	blood	feeding,	the	66	
movement	of	both	hosts	and	mosquitoes,	and	the	relevant	spatial	scales	for	67	
measuring	transmission	and	for	modeling	dynamics	and	control. 	68	
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Mosquito	blood	feeding	and	concurrent	expectoration	creates	a	wound	and	a	delivery	69	

system	by	which	pathogens	pass	through	vertebrate	skin	to	infect	vertebrate	blood	and	70	

other	target	tissues	causing	diseases	such	as	malaria,	dengue,	filariasis,	Japanese	71	

encephalitis,	West	Nile,	Rift	Valley	fever,	and	chikungunya.	The	significant	annual	health	72	

burden	of	these	diseases	(4),	most	notably	malaria	(5‐8)	and	dengue	(9),	has	raised	their	73	

profile	and	increased	funding	for	their	research	and	prevention.	The	recent	global	financial	74	

crisis	meanwhile	has	increased	pressure	to	show	a	rapid	return	on	this	investment	(10).	75	

Donors	and	government	agencies	must	weigh	investments	in	existing	public	and	veterinary	76	

health	interventions	against	the	development	pipeline	for	vaccines,	drugs,	diagnostics,	and	77	

novel	mosquito‐control	technologies,	such	as	new	insecticides	and	genetic	interventions.	At	78	

the	same	time,	policy	makers	are	asking	challenging	questions	about	disease	control	79	

policies,	targets	for	intervention	coverage	levels,	the	costs	and	benefits	of	combining	80	

various	interventions,	and	the	optimal	ways	to	scale	up	regionally	or	globally.	Given	the	81	

complex,	quantitative	nature	of	control	targets	and	policy	for	mosquito‐borne	diseases,	82	

dynamic	models	of	mosquito‐borne	pathogen	transmission	(MBPT)	are	indispensable	tools	83	

for	investigating	these	questions	(11‐14). 84	

Mathematical	models	of	MBPT	have	been	used	productively	to	understand	and	identify	key	85	

epidemiological	features,	to	measure	transmission	intensity,	and	to	guide	disease	control	86	

programs	(1,	2).	As	the	need	for	understanding	transmission	dynamics	and	evaluating	87	

control	options	has	increased,	the	types	of	models	being	developed	and	the	way	they	are	88	

used	have	likewise	evolved.	To	understand	better	the	capabilities	of	current	approaches,	89	

we	recently	reviewed	the	current	state	of	MBPT	models	(2).	Here,	we	extend	that	review	to	90	

critique	the	models,	to	look	at	metrics	of	transmission,	and	the	way	those	metrics	have	91	

been	combined	with	models	to	better	inform	and	more	productively	shape	disease	control	92	

policies. 93	

Development of the Models and Metrics 94	
The	basic	science	and	accompanying	theory	for	measuring	and	modeling	MBPT	developed	95	

slowly	from	1877,	when	Manson	showed	that	mosquitoes	transmit	filarial	worms	(15,	16).	96	

Mosquitoes	were	then	implicated	in	the	transmission	of	malaria	in	1897	(17),	yellow	fever	97	
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in	1900	(18),	and	dengue	fever	in	1906	(19).	Hundreds	of	pathogen	species	are	now	known	98	

to	be	mosquito‐transmitted	(20),	including	38	of	clinical	significance	in	humans	(21).	99	

Throughout	that	history,	mathematical	models	describing	MBPT	and	control	catalyzed	the	100	

development	of	concepts	and	metrics	that	define	the	study	of	mosquito‐borne	pathogens	101	

today	(1,	2).	102	

The	quantitative	approach	to	studying	MBPT	started	with	Ronald	Ross,	who	(after	showing	103	

that	mosquitoes	transmit	malaria)	turned	his	attention	to	promoting	vector	control,	and	to	104	

improving	malaria	diagnostics.	He	developed	a	mathematical	theory	for	vector	control	105	

through	larval	source	management	(22)	and	for	MBPT	(23,	24),	as	well	as	a	modeling	106	

framework	for	epidemics	in	general	(1).	Ross’s	transmission	models	and	Alfred	Lotka’s	107	

analysis	(25)	established	solid	mathematical	foundations	for	MBPT	dynamics	(1).		108	

As	Ross	contemplated	disease	control,	he	recognized	the	importance	of	measuring	the	109	

intensity	of	malaria	transmission.	The	proportion	of	the	population	with	a	palpably	110	

enlarged	spleen	–	the	“spleen	rate”	–	had	been	a	standard	measure	of	endemic	malaria	even	111	

before	Laveran	made	microscopic	diagnosis	of	malaria	possible	(26).	Ross	used	the	112	

prevalence	of	infection	(the	proportion	of	a	population	found	to	be	infected	with	malaria	113	

parasites	by	microscopic	analysis,	called	the	“malaria	rate”	or	“parasite	rate”	abbreviated	114	

as	PR).	Driven	by	a	need	for	more	accurate	metrics,	he	developed	the	“thick	film”	to	115	

improve	the	sensitivity	and	specificity	of	microscopy	for	diagnosing	malaria	(1).	The	use	of	116	

the	PR	as	a	metric	consequently	increased	(26).	117	

Ross	also	devised	mathematical	formulas	relating	the	force	of	infection	(FOI,	he	called	it	the	118	

“happenings”	rate)	to	other	measurable	quantities;	i.e.,	the	fraction	of	a	cohort	that	would	119	

be	infected	over	time	or	at	a	particular	age	or	in	some	fixed	time	period.	An	important	next	120	

step	came	when	Muench	developed	the	“reversible	catalytic”	model	into	a	statistical	tool	121	

(27)	for	both	infection	prevalence	and	serology	by	age	as	measured	by	the	sero‐conversion	122	

rate	(SCR).	123	

Ross’s	mathematical	models	describing	adult	mosquito	movement	and	the	spatial	scales	124	

required	for	effective	larval	source	management	(22)	helped	to	motivate	and	justify	mark‐125	

release‐recapture	studies	to	quantify	mosquito	movement,	which	was	part	of	operational	126	
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research	during	construction	of	the	Panama	Canal	(28).	In	his	books	and	papers,	Ross	made	127	

the	case	for	developing	entomological	metrics	of	the	intensity	of	transmission.	In	the	128	

1930s,	the	“infective	biting	density”	was	devised	(29)	to	measure	the	number	of	infectious	129	

bites,	per	person,	per	day	or	per	year;	it	is	now	commonly	known	in	malarial	studies	as	the	130	

entomological	inoculation	rate	(EIR)	(30).	The	original	pioneering	study	also	compared	the	131	

EIR	to	other	metrics	of	transmission	–	the	PR	in	older	children,	and	the	FOI	as	it	was	132	

reflected	in	the	pattern	of	rising	age‐specific	PR	from	infancy	through	childhood.	The	133	

authors	noted	that	although	the	patterns	were	roughly	consistent	with	theoretical	134	

predictions,	epidemiological	measures	of	transmission	were	obviously	much	lower	than	135	

predicted	by	entomological	metrics	(29).	136	

In	the	1950s,	George	Macdonald	analyzed	and	synthesized	studies	from	the	previous	137	

decades	describing	the	epidemiology	of	malaria	and	its	vectors	in	a	series	of	landmark	138	

papers	(31,	32).	His	most	important	achievements	are	encapsulated	in	a	formula	for	the	139	

basic	reproductive	number	(sometimes	called	a	ratio	or	rate)	for	malaria,	now	called	 R
0
	140	

(Fig.	1)	(33‐35).	Macdonald’s	formula,	which	was	superficially	similar	to	a	threshold	141	

criterion	developed	by	Ross,	was	based	on	a	simple	yet	compelling	mathematical	model	of	142	

the	entomological	factors	associated	with	transmission,	most	notably	daily	mosquito	143	

survival	(Fig.	1).	A	component	of	 R
0
is	the	number	of	infectious	bites	that	would	eventually	144	

arise	from	all	the	mosquitoes	that	would	be	infected	after	biting	a	single	infectious	host	on	145	

a	single	day,	called	the	daily	reproductive	number	or	vectorial	capacity	(VC)	(36).	VC	was	146	

also	affected	by	the	frequency	of	mosquito	feeding	on	the	pathogen’s	host,	mosquito	147	

population	density	relative	to	host	population	density,	mosquito	survival,	and	the	length	of	148	

the	period	during	which	a	mosquito	is	infected	but	not	yet	infectious.	The	basic	149	

reproductive	number,	 R
0
,	describes	the	expected	number	of	times	a	pathogen	is	150	

transmitted	from	one	host	to	another	after	one	complete	pathogen	life	cycle	(Fig.	1).	A	151	

threshold	condition	for	a	pathogen	to	invade	a	population	is	 R
0
1,	because	each	infected	152	

host	would,	on	average,	have	to	transmit	the	pathogen	to	more	than	one	infected	host.	As	a	153	

metric	of	transmission	intensity,	 R
0
thus	encapsulates	most	aspects	of	the	transmission	154	

process,	and	Macdonald	proposed	it	as	a	threshold	condition	for	pathogen	persistence	in	155	
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the	absence	of	control	(34).	156	

Macdonald	pioneered	a	quantitative	theory	of	vector	control	in	an	era	when	contact	157	

pesticides	(e.g.	DDT	for	indoor	residual	spraying)	were	being	used	extensively	for	the	first	158	

time.	Macdonald’s	analysis	was	based	on	a	mathematical	sensitivity	analysis	of	the	formula	159	

for	 R
0
(32), which	showed	that	the	potential	for	transmission	was	affected	by	mosquito	160	

longevity	in	two	ways:	an	infected	mosquito	must	survive	long	enough	for	the	pathogen	to	161	

mature,	and	the	mosquito	must	blood	feed	while	infectious,	so	the	longer	it	lived,	the	more	162	

infectious	bites	it	would	deliver.	Because	the	latent	period	for	infections	in	the	mosquito,	163	

called	the	“extrinsic	incubation	period,”	is	generally	longer	than	most	mosquitoes	are	164	

expected	to	live	(though	the	length	of	this	period	varies	depending	on	the	pathogen‐165	

mosquito	interaction	and	the	environment),	the	mosquitoes	that	are	most	likely	to	transmit	166	

and	propagate	the	pathogen	are	those	that	bit	an	infectious	host	when	they	were	young	167	

and	then	survived	to	be	quite	old	(32,	37).	More	importantly,	since	mortality	affected	these	168	

two	aspects	of	transmission	in	Macdonald’s	model,	the	potential	intensity	of	transmission	169	

would	be	highly	sensitive	to	mosquito	survival.	Macdonald’s	analysis	has	since	been	used	170	

to	advocate	for	prioritizing	modes	of	control	that	reduce	adult	mosquito	survival.	171	

Macdonald	argued	that	measurement	of	transmission	should	become	a	routine	part	of	the	172	

Global	Malaria	Eradication	Programme	(GMEP,	1955‐1969),	and	his	papers	and	ideas	173	

spawned	new	research	on	practical	methods	for	measuring	mosquito	survival	under	field	174	

conditions,	the	estimation	of	 R
0
,	the	development	of	a	codified	set	of	methods	for	175	

estimating	the	parameters	comprising	vectorial	capacity,	and	on	tests	of	Macdonald’s	176	

theory	of	control	(1).	177	

By	the	end	of	the	GMEP,	a	set	of	quantities	had	been	identified	that	were	relevant	for	178	

modeling	MBPT	dynamics	and	control	along	with	a	set	of	field	metrics	and	statistical	179	

methods	for	measuring	transmission.	Transmission	could	be	measured	in	terms	of	180	

infection	prevalence,	exposure	to	a	pathogen	either	epidemiologically	(i.e.	through	the	FOI),	181	

serologically	(i.e.	through	the	SCR),	entomologically	(i.e.	the	EIR),	or	through	the	182	

entomological	potential	(i.e.,	the	vectorial	capacity,	which	can	be	measured	even	in	the	183	

absence	of	a	pathogens).	The	models	made	powerful,	specific,	and	testable	predictions	184	
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about	the	way	these	quantities	would	scale	across	the	spectrum	of	transmission	and	likely	185	

effects	of	control,	and	they	set	the	stage	for	the	study	of	MBPT	through	to	the	present	day.	186	

Although	the	GMEP	and	a	program	to	eradicate	Aedes	mosquitoes	from	the	New	World	for	187	

yellow	fever	control	were	being	abandoned,	the	1970s	were	an	important	transition	period	188	

in	the	mathematical	study	of	MBPTs.	Important	advances	came	with	rigorous	applications	189	

of	the	catalytic	model	to	estimate	incidence	from	highly	age‐stratified	PR	or	serological	190	

data	(38,	39),	and	new	methods	to	estimate	malaria	incidence	from	longitudinal	data	(40).	191	

The	practical	issues	associated	with	measuring	vectorial	capacity	spurred	more	pragmatic	192	

approaches	for	malaria,	and	in	1980,	the	WHO	returned	to	using	the	EIR	as	a	single,	193	

comprehensive	measure	of	transmission	intensity	(30).	A	new	mathematical	model	was	194	

developed	for	understanding	transmission	of	malaria	in	highly	endemic	areas,	where	195	

immunity	was	an	important	feature	of	the	system,	and	it	played	a	key	role	in	the	design	and	196	

interpretation	of	a	large‐scale	control	trial	in	Garki,	Nigeria	(41).	The	model	was	later	197	

applied	to	a	similar	transmission	setting	in	Kenya	(42).	Studies	published	between	1965	198	

and	1980	introduced	the	first	simulation	models	(43,	44)	and	explored	themes	of	immunity	199	

(41),	seasonality,	spatial	dynamics,	and	heterogeneous	mosquito	biting	and	its	effects	on	200	

transmission	(45).	The	state	of	the	science	at	that	time	is	summarized	in	several	reviews	201	

(46‐48).	202	

Modern Theory 203	
Research	themes	introduced	during	the	1970s	have	been	developed	through	to	the	present	204	

day.	The	initial	focus	on	malaria	has	been	expanded	to	include	the	broader	study	of	other	205	

mosquito‐borne	pathogens,	which	are	transmitted	by	vectors	with	different	behaviors	and	206	

ecologies	and	which	have	functionally	different	transmission	dynamics	and	relations	to	207	

their	hosts.	As	investment	in	mosquito‐borne	pathogen	research	and	interventions	has	208	

been	scaled	up,	there	has	been	a	dramatic	increase	both	in	the	total	number	of	publications	209	

in	this	field	as	well	as	those	including	theory.	At	least	388	models	that	included	a	210	

mechanistic	description	of	transmission	were	found	in	325	publications	between	1970	and	211	

2010	(2);	approximately	half	of	these	were	published	after	2005.	These	models	were	212	

compared	using	a	detailed,	79‐part	questionnaire	to	identify	the	assumptions	they	made	213	
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about	a	wide	range	of	biological	features	considered	by	the	models.	Despite	the	growing	214	

body	of	theory,	most	models	published	in	the	last	40	years	bear	a	striking	resemblance	to	215	

the	Ross‐Macdonald	model	(2).	Out	of	15	core	assumptions	in	the	Ross‐Macdonald	model,	216	

most	existing	models	adopted	all	but	one,	two,	or	three	of	them,	leaving	most	of	the	217	

underlying	framework	unquestioned	and	intact	(a	detailed	description	of	our	methods	and	218	

findings	can	be	found	elsewhere	(2)).	Does	this	conservatism	reflect	the	accuracy	and	219	

appropriateness	of	the	simplifying	assumptions	required	by	Ross‐Macdonald	models,	or	220	

has	the	field	become	canalized	to	the	exclusion	of	other	approaches?	221	

The	structure	and	content	of	these	MBPT	models	can	be	understood	and	classified	by	the	222	

assumptions	they	make	about	five	distinct	components	of	transmission	(Fig.	2):	1)	223	

pathogen	infection	dynamics	inside	the	vertebrate	host,	including	immunity;	2)	adult	224	

mosquito	population	dynamics	and	pathogen	infection	dynamics	inside	the	mosquito;	3)	225	

transmission	of	the	pathogen	including	the	mosquito‐host	encounter	and	ensuing	blood	226	

meal	from	the	mosquito	to	vertebrate	host	or	vice	versa,	as	well	as	dispersion	of	the	227	

pathogen	in	infected	mosquito	or	vertebrate	hosts;	4)	the	ecology	and	population	dynamics	228	

of	immature	mosquito	population	dynamics,	involving	development	from	eggs,	through	229	

four	larval	instars,	pupation	and	emergence	of	adults	from	the	aquatic	habitats;	and	5)	egg	230	

laying,	which	links	blood	feeding	adult	mosquitoes	to	immature	mosquito	populations	in	231	

both	time	and	space.	Not	every	model	of	transmission	includes	every	component.	232	

Published	mechanistic	models	of	pathogen	or	mosquito	population	dynamics	have	233	

generally	been	developed	to	address	a	particular	question,	so	they	focus	on	one	or	more	of	234	

these	components	treating	inputs	from	other	components	as	fixed	parameters.	A	table	235	

classifying	models	by	their	purpose	is	also	available	(2).	236	

These	five	components	have	been	extended	to	address	specific	biological	or	control	237	

questions	involving:	various	modes	of	vector	control	(49‐51);	transmission	or	disease	238	

control	with	drugs	or	vaccines	(52‐55);	pathogen	evolution	and	the	management	of	239	

virulence	or	drug	resistance	(56);	two	or	more	pathogens	and	facilitation	or	competition	240	

(55,	57);	genetic	manipulation	of	mosquitoes	or	the	evolution	of	insecticide	resistance	(58,	241	

59);	weather	or	climate	and	its	relative	effects	on	transmission	(60);	impact	of	parasite	242	

burden	and	aggregation	(61,	62);	the	role	of	some	specific	biological	mechanism	in	243	
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transmission;	spatial	or	metapopulation	dynamics	(63);	and	multi‐host	dynamics	(64).	244	

Among	the	most	important	innovations	in	modeling	are	those	that	address	immuno‐245	

epidemiology:	models	of	pathogen	population	dynamics	inside	the	skin	of	a	vertebrate	246	

host,	including	host	immunity	and	progression	from	infection	to	disease	(65‐67).	Different	247	

mosquito‐borne	pathogens	interact	with	their	human	host	in	very	different	ways	with	248	

important	consequences	for	within‐host	dynamics:	for	example	compare	the	249	

microparasitic	dynamics	of	chikungunya	(68);	interactions	among	four	microparasitic	250	

serotypes	of	dengue	(55,	69);	the	macroparasitic	accumulation	of	filarial	worms	(61);	and	251	

the	dynamics	of	superinfection	with	genotypically	and	phenotypically	diverse	malaria	252	

parasites	(70).	Some	important	consequences	of	these	differences	include	the	relevance	of	253	

superinfection,	the	effects	of	immunity	on	transmission,	and	the	functional	significance	of	254	

genetic	diversity	in	pathogen	populations.		255	

Of	great	importance	for	the	comparative	study	of	MBPT	are	functional	differences	in	the	256	

immuno‐epidemiology	of	a	pathogen‐host	interaction	that	constrain	the	ways	transmission	257	

can	be	measured	and	the	sorts	of	questions	that	can	be	addressed	for	any	single	disease.	258	

Full	immunity	to	filariasis	and	malaria	is	not	readily	developed,	and	infections	persist	for	259	

long	periods	of	time,	so	the	parasite	reservoir	in	humans	is	reasonably	large.	It	is	thus	260	

practical	(even	if	challenging)	to	measure	the	prevalence	of	malaria	or	filariasis	infection	in	261	

humans	and	in	mosquitoes.	Theory	suggests	that	superinfection	is	an	interesting	and	262	

important	metric	of	transmission	for	malaria	and	filariasis,	so	the	study	of	these	parasites	263	

has	sought	methods	to	measure	individual	variation	in	exposure.	Because	dengue	and	264	

other	arboviral	infections	cause	acute,	immunizing	infections,	the	pathogen	reservoir	is	265	

comparatively	smaller,	and	the	prevalence	of	infection	in	both	humans	and	mosquitoes	is	266	

much	lower.	In	consequence,	individual	variation	in	exposure	has	received	much	less	267	

attention	for	arboviral	infections,	and	measures	of	EIR	are	more	useful	for	studying	268	

malaria,	for	example,	than	for	dengue.	Similar	issues	affect	the	comparative	ease	of	269	

studying	transmission	through	the	serological	status	of	humans	for	chikungunya,	malaria,	270	

dengue,	and	filariasis.	These	constraints	beg	for	a	comparative	approach	to	MPBT,	because	271	

even	if	the	vectors	differ	in	some	important	ways,	the	observations	made	from	studying	272	

pathogen	transmission	in	one	system	could	have	great	value	for	understanding	the	273	



	 11

importance	of	phenomena	that	could	be	important	but	that	can’t	be	measured	in	the	others.	274	

A	more	recent	trend	that	complements	modeling	studies	is	the	creation,	curation,	and	275	

analysis	of	databases	describing	MBPT,	including	mosquito	bionomics,	transmission	276	

metrics,	and	other	important	variables	accumulated	over	more	than	a	century	of	277	

investigations	(71‐74).	Mosquito	ecology	and	MBPT	are	highly	heterogeneous	over	space	278	

and	time	(75‐78).	At	a	large	scale,	it	is	important	to	know	where	transmission	is	occurring,	279	

so	maps	have	played	an	important	historical	role	in	control.	The	role	of	maps	and	the	280	

supporting	technologies	have	expanded	substantially	in	recent	years	with	the	publication	281	

of	global	maps	describing	the	distribution	of	malaria	(72,	79)	and	of	dengue	(9).	Also	of	282	

great	interest	are	databases	that	have	aggregated	metrics	of	transmission,	especially	those	283	

studies	that	have	measured	two	or	more	metrics	at	the	same	time	and	place,	and	that	284	

investigated	the	properties	of	various	metrics	across	space	and	time	or	across	transmission	285	

intensities	(73,	74,	80).	The	marriage	of	models	and	large	aggregated	databases	has	made	it	286	

possible	to	test	the	models	to	an	extent	that	has	not	been	possible	before.	287	

Testing Theory 288	
Measuring	the	different	components	of	vectorial	capacity	allows	the	potential	intensity	of	289	

pathogen	transmission	by	any	mosquito	population	to	be	assessed.	But	studies	adopting	290	

this	approach	have	raised	important	questions	about	the	utility	of	these:	large,	poorly	291	

quantified	errors	can	arise	because	of	the	methods	used	to	catch	mosquitoes	and	estimate	292	

bionomic	parameters	(81);	systematic	bias	in	parameter	estimates	can	arise	from	293	

fluctuations	in	mosquito	populations	(82)	or	senescing	mosquito	populations,	or	other	294	

assumptions	of	the	underlying	models;	and	in	making	an	estimate	of	vectorial	capacity,	295	

errors	can	be	propagated	by	taking	the	product	of	several	noisy	and	potentially	biased	296	

parameter	estimates	(83).	297	

Complementary	approaches	to	vectorial	capacity	involve	the	indirect	estimation	of	 R
0
	298	

using	other	field	metrics	of	exposure,	based	on	the	assumptions	of	a	mathematical	model	299	

(35).	Such	methods	for	malaria	include	the	estimation	of	the	EIR,	FOI,	or	PR.	A	key	300	

observation	is	that	the	daily	EIR	is	approximately	the	product	of	vectorial	capacity	and	the	301	
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net	infectiousness	of	the	pathogen	reservoir	in	the	vertebrate	hosts,	i.e.	the	probability	a	302	

mosquito	becomes	infected	after	feeding	on	the	pathogen’s	vertebrate	host	(1,	41).	This	303	

makes	it	possible,	at	least	in	theory,	to	measure	vectorial	capacity	in	two	different	ways	304	

(assuming	there	is	some	independent	estimate	of	net	infectiousness).	The	Ross‐Macdonald	305	

model	and	most	models	developed	in	this	tradition	assume	the	FOI	is	the	product	of	the	306	

EIR	and	the	efficiency	of	transmission	per	bite,	and	the	relationship	between	the	EIR	and	307	

the	PR	is	given	by	simple	formulas.	These	can	be	tested	against	the	observed	values.	Other	308	

measures	include	estimating	the	FOI	from	changes	in	serology	in	a	population	versus	age	or	309	

time	(84,	85).	For	dengue	and	other	acute	immunizing	infections	in	simple	systems,	 R
0
	can	310	

be	measured	by	monitoring	changes	in	the	number	of	cases	over	time	(86).	Measuring	311	

changes	in	the	number	of	cases	becomes	more	difficult	for	some	pathogens	that	are	passed	312	

among	many	mosquito	or	many	vertebrate	host	species,	especially	when	the	epidemiology	313	

of	the	pathogen	and	presentation	of	the	disease	differs	for	each	species.	Measuring	changes	314	

in	the	number	of	cases	is	also	difficult	for	the	largely	endemic	diseases	of	malaria	and	315	

filariasis	(35).	Filariasis	models	focus	on	the	accumulation	of	worm	burdens,	and	malaria	316	

epidemics	are	restricted	to	areas	with	unstable	transmission	or	populations	encountering	317	

malaria	for	the	first	time.	318	

The	richness	of	methods	for	estimating	 R
0
	provide	different	ways	of	cross‐validating	or	319	

“testing”	the	underlying	theory,	and	unsurprisingly,	such	studies	have	also	exposed	some	of	320	

the	weaknesses	due	to	the	simplifying	assumptions	of	the	Ross‐Macdonald	model.	Early	321	

tests	of	the	theory	for	malaria	that	compared	estimates	of	 R
0
	based	on	the	EIR	and	FOI,	322	

showed	large	discrepancies	because	transmission	of	malaria	parasites	from	mosquitoes	to	323	

humans	was	highly	inefficient	(87)	–	many	infectious	bites	are	required	for	each	infection,	324	

which	implies	a	high	ratio	of	EIR	to	FOI	–	which	is	similar	to	what	Macdonald	found	in	his	325	

reanalysis	of	earlier	studies	(31).	Similarly,	early	studies	of	filariasis	independently	326	

concluded	that	transmission	is	more	inefficient	than	typically	assumed	(88).	Further	327	

studies	of	malaria	using	an	aggregated	dataset	of	paired	transmission	metrics	detected	a	328	

strongly	non‐linear,	empirical	relationship	that	exists	between	the	EIR	and	the	FOI,	329	

including	ten‐	to	hundred‐fold	quantitative	discrepancies	in	places	with	the	highest	330	
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measured	transmission	(73).	331	

Published	estimates	of	 R
0
	for	mosquito‐borne	pathogens	are	among	the	highest	recorded	332	

across	all	pathogens	(34, 35, 89).	At	first	glance,	these	predictions	seem	reasonable	given	333	

the	potential	for	extraordinarily	high	mosquito	population	densities	and	biting	rates,	but	334	

upon	more	careful	examination,	and	in	light	of	the	observed	inefficiencies	in	transmission,	335	

they	are	questionable.	Also,	the	highest	estimates	are	generally	based	on	entomological	336	

metrics	(i.e.,	EIR	or	vectorial	capacity),	which	are	not	directly	comparable	to	those	collected	337	

for	directly	transmitted	diseases.	Where	non‐entomological	estimates	have	been	made,	338	

which	are	generally	measured	using	methods	that	can	be	compared	to	estimates	made	for	339	

other	pathogens,	the	estimates	obtained	are	much	lower	(35,	90).	The	extremely	high	340	

estimates	of	 R
0
	obtained	from	calculations	involving	vectorial	capacity	are	due	to	the	341	

implicit	assumption	that	across	the	spectrum	of	intensity,	the	number	of	infections	is	342	

proportional	to	the	number	of	infectious	bites.	343	

Heterogeneous	biting,	a	name	for	the	empirical	fact	that	a	small	fraction	of	the	vertebrate	344	

population	tends	to	supply	most	of	the	blood	meals	for	mosquitoes,	is	one	factor	that	could	345	

explain	what	appears	to	be	inefficient	transmission	because	infectious	mosquito	bites	are	346	

redistributed	in	a	way	that	tends	to	reduce	the	number	of	unique	individuals	who	would	be	347	

infected	(34,	73,	80,	88,	91).	Efficiency	in	transmission	also	declines	if	there	are	only	a	few	348	

vertebrate	hosts	in	the	neighborhood	who	could	be	infected.	Some	models	of	349	

heterogeneous	biting	have	become	integrated	into	the	standard	Ross‐Macdonald	model	350	

(34),	but	much	less	work	has	been	done	on	the	spatial	scales	of	transmission	and	the	effects	351	

of	local	mixing	between	human	and	mosquito	hosts.	352	

Critiquing Theory 353	
Despite	the	enormous	and	expanding	body	of	evidence	and	theory	describing	MBPT	354	

dynamics	and	control,	highly	inefficient	transmission	challenges	the	applicability	of	the	355	

basic	theory.	These	same	questions	emerge	from	attempts	to	use	maps	and	models	356	

together.	How	heterogeneous	is	transmission	over	time	and	space?	What	factors	give	rise	357	

to	heterogeneous	transmission?	What	are	the	appropriate	scales	for	modeling	MBPT	358	
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dynamics	and	control?	What	are	the	appropriate	sampling	frames	for	measuring	359	

transmission?	360	

Heterogeneity	in	transmission	is	observed	at	every	spatial	scale	(Fig.	3).	At	small	scales	361	

(e.g.	<	100	meters),	where	mosquito	and	human	behavior	and	ecology	give	rise	to	362	

heterogeneous	biting,	there	are	important	questions	about	how	mosquito	vectors	and	363	

hosts	are	distributed	across	the	landscape,	how	this	influences	where	transmission	occurs	364	

and	how	an	increased	understanding	of	those	processes	can	be	applied	to	improve	efforts	365	

to	model	transmission	and	apply	the	lessons	to	reduce	disease.	Heterogeneity	is	also	366	

important	at	spatial	scales	ranging	from	kilometers	to	continents,	where	ecology	and	367	

biogeography	determine	the	composition	and	dynamics	of	the	vector	and	host	368	

communities	and	the	intensity	of	transmission.	An	important	unanswered	question	is	how	369	

the	same	processes	give	rise	to	such	a	diverse	set	of	patterns	across	different	scales.	370	

The	Ross‐Macdonald	model	provides	a	starting	point	for	dealing	with	such	questions,	but	it	371	

also	has	limitations.	Among	the	most	widely	adopted	simplifying	assumptions	of	the	Ross‐372	

Macdonald	model	was	mass‐action,	a	19th	century	principle	from	chemistry	describing	the	373	

reaction	rates	of	molecules	in	an	ideal	solution.	The	Ross‐Macdonald	model	assumes	that	374	

all	hosts	are	identical	and	equally	exposed	to	pathogens	at	the	same	rates,	and	that	the	375	

probability	of	transmission	is	proportional	to	the	product	of	host	and	vector	densities.	376	

Thus,	regardless	of	the	size	of	the	population,	there	are	no	epidemiologically	important	377	

correlations	in	the	distribution	of	consecutive	bites	on	the	same	or	different	hosts.	By	378	

assuming	mass‐action	it	is	possible	to	reduce	a	great	deal	of	complexity	and	arrive	at	a	379	

relatively	simple	expression	for R
0
. 	380	

Macdonald’s	formula	for	 R
0
	is	appealing,	in	part,	because	it	serves	several	mathematical	381	

purposes	at	once.	It	is	the	expected	number	of	secondary	infections	arising	from	an	initial	382	

infection	in	a	non‐immune	population,	and	so	it	gives	a	deterministic	threshold	for	the	383	

pathogen	to	establish	endemic	transmission	chains.	It	also	provides	a	single	metric	of	the	384	

intensity	of	transmission	that	is	suitable	for	comparing	the	transmission	reducing	effects	of	385	

different	modes	of	control,	either	alone	or	in	combination.	The	effects	of	any	mode	of	386	

control	on	transmission	can	be	compared	with	the	effects	of	modes	of	control	that	reduce	387	
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adult	mosquito	population	density,	which	is	linearly	proportional	to	 R
0
.	Depending	on	the	388	

patterns	of	contact,	however,	the	simple	scaling	relationships	that	make	all	these	389	

interpretations	alike	could	change	because	of	factors	that	were	omitted	from	Macdonald’s	390	

formula.	391	

Pathogen	transmission	by	mosquitoes	has	been	characterized	as	being	highly	local	and	392	

focal,	with	transmission	foci	and	hotspots	(76).	Hotspots	are	affected	by	the	juxtaposition	393	

of	the	aquatic	habitats	suitable	for	the	development	of	immature	mosquito	populations	to	394	

the	locations	where	blood	feeding	occurs,	and	by	a	range	of	mitigating	factors.	All	395	

transmission	involves	pathogen	movement	in	either	moving	infected	mosquitoes	or	396	

moving	infected	hosts,	but	what	factors	determine	the	size	of	a	focus	or	the	scales	that	397	

characterize	transmission?	Ironically,	though	Ross’s	first	model	addressed	questions	about	398	

local	mosquito	movement	(22),	movement	and	pathogen	dispersal	have	not	become	a	core	399	

part	of	MBPT	theory.	400	

If	local	processes	drive	transmission,	then	the	spatial	scales	that	characterize	transmission	401	

will	tend	to	be	small.	In	simple	systems	with	one	host	and	one	vector,	effective	host	402	

population	sizes	must	be	small,	so	that	infectious	bites	are	distributed	on	only	a	few	hosts.	403	

In	more	complex	systems,	notably	zoonotic	mosquito‐borne	pathogens	with	many	vectors	404	

and	many	hosts,	transmission	patterns	are	affected	by	the	diversity	of	less‐competent	or	405	

non‐competent	hosts	(92).	The	more	heterogeneous	the	distribution	of	bites	on	those	few	406	

hosts,	the	greater	the	number	of	bites	that	would	land	on	the	same	few	hosts,	and	the	lower	407	

the	expected	number	of	different	hosts	who	would	become	infected.	Because	of	local	408	

mixing	and	heterogeneous	biting,	the	actual	number	of	new	cases	arising	from	an	index	409	

case	is	thus	strongly	limited	by	the	number	of	hosts	that	could	possibly	be	bitten.	The	410	

difference	between	the	number	of	infectious	bites	and	the	number	of	infections	is	due	to	411	

repeated	transmission	of	pathogens	to	the	same	few	hosts	thereby	dampening	412	

amplification.	In	more	mathematical	terms	 R
0
	must	be	a	non‐linear	function	of	vectorial	413	

capacity.	The	functions	describing	that	relationship	depend	on	the	distributions	of	hosts	414	

and	vectors	and	the	spatial	scales	that	characterize	transmission.	415	

Vectorial	capacity	counts	the	number	of	infectious	bites	arising	from	a	single	host	on	a	416	
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single	day.	The	formula	originally	assumed	hosts	were	perfectly	infectious,	but	the	formula	417	

has	also	been	modified	to	include	vector	competence.	It	does	not	take	into	account	the	418	

redistribution	of	infectious	bites	on	a	finite	number	of	vertebrate	hosts	in	a	population	with	419	

heterogeneous	exposure.	The	problem	with	inferring	transmission	by	counting	infectious	420	

bites	arising	is	illustrated	by	analogy:	if	 R
0
	for	directly	transmitted	pathogens	were	421	

proportional	to	the	number	of	inocula	shed,	and	by	assuming	each	one	of	those	particles	422	

reached	and	infected	a	different	host,	the	estimates	for	other	diseases	would	likely	be	just	423	

as	high	as	for	indirectly	transmitted	mosquito‐borne	pathogens.	What	the	concept	of	424	

vectorial	capacity	does	not	account	for	is	the	potentially	complicated	patterns	of	human‐425	

mosquito	contact	in	space	and	time	that	distributes	infectious	bites	among	a	cascade	of	426	

different	hosts	with	varying	infectious	status,	immune	level	and	innate	susceptibility.	Just	427	

as	some	inocula	are	redundant	in	infecting	the	same	susceptible	host	many	times	over,	so	428	

too	are	bites	by	infectious	mosquitoes	redundant	whenever	transmission	is	localized	or	429	

intense.	430	

Mathematical	theory	has	explored	the	properties	of	spatially	localized	transmission,	431	

including	the	consequences	for	transmission	of	heterogeneous	biting	(34,	45,	47,	93‐96),	432	

local	spatial	heterogeneity	(94,	96),	metapopulation	dynamics	(63),	and	small	population	433	

sizes	(34,	96,	97).	Other	frameworks	have	been	developed	more	recently	that	show	how	434	

heterogeneous	transmission	arises	and	these	lay	the	foundations	for	a	systematic	study	of	435	

the	way	these	factors	vary	across	systems	(3,	92).	436	

Despite	highly	spatially	heterogeneous	patterns	of	transmission,	mathematical	methods	437	

continue	to	use	 R
0
	as	a	deterministic	threshold	for	the	ability	of	a	pathogen	to	invade	a	438	

system,	i.e.,	if	 R
0
1	then	a	pathogen	will	tend	to	spread.	Heterogeneity	of	all	kinds	calls	439	

into	question	the	value	of	using	a	single	number	to	describe	how	well	a	pathogen	invades.	440	

Expressions	for	 R
0
,	even	with	heterogeneity,	describe	how	spread	would	eventually	occur,	441	

i.e.,	the	asymptotic	behavior	of	the	system,	without	regard	to	transient	phenomena.	Such	442	

transients	are	particularly	important	during	invasion	if	pathogen	establishment	is	443	

stochastic.	If	the	underlying	biological	determinants	of	vectorial	capacity	are	spatially	and	444	

temporally	heterogeneous,	then	the	expected	outcome	will	be	expected	to	vary	in	some	way	445	
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over	space	and	time.	The	focal	nature	of	transmission	raises	questions	about	the	relevance	446	

of	 R
0
	as	a	threshold	for	determining	whether	the	pathogen	would	tend	to	invade	here	and	447	

now	even	if	the	threshold	has	determined	that	it	could	invade	somewhere	or	sometime.	448	

Because	invasion	is	a	stochastic	phenomenon,	it	matters	where	and	when	the	pathogen	is	449	

introduced	and	what	is	the	local	vectorial	capacity	(94,	96).	To	put	it	another	way,	it	may	be	450	

possible	for	a	pathogen	to	invade	a	potential	hotspot,	but	only	if	it	happens	to	find	it.	In	this	451	

context,	it	is	important	to	note	that	there	is	no	mathematical	construct	for	defining	a	452	

“hotspots”	based	on	dynamical	criteria.	453	

Recasting	Theory 454	
Development	of	theory	and	tests	of	that	theory	have	raised	questions	about	how	actual	455	

transmission	differs	from	mass	action,	and	how	heterogeneity	and	poor	mixing	affect	456	

quantitative	conclusions	about	control.	Ideas	from	the	Ross‐Macdonald	model,	such	as	the	457	

calculation	of	thresholds	and	the	sensitivity	of	transmission	to	adult	mosquito	longevity,	458	

have	been	useful.	Questions	confronting	contemporary	policy	for	mosquito‐borne	459	

pathogens	concern	quantities	describing	phenomena	that	vary	through	time	and	space	and	460	

at	different	scales.		461	

In	order	to	address	these	questions	we	believe	new	theory	should	be	based	on	the	events	462	

that	give	rise	to	transmission	and	accommodate	extensive	variation	in	time	and	space.	New	463	

models	of	transmission	process	should	emerge	from	a	quantitative	description	of	the	464	

complex	local	biological	interactions	among	vectors	and	their	hosts.	The	logic	that	465	

motivated	Macdonald’s	formula	for	 R
0
	is	compelling,	and	it	seems	likely	that	any	attempt	466	

to	develop	a	quantitative	index	of	transmission	would	adopt	many	of	the	same	set	of	467	

parsimonious	assumptions.	On	the	other	hand,	we	argue	that	estimates	of	 R
0
	would	be	468	

more	useful	if	they	accounted	for	the	spatial	and	temporal	dimensions	of	transmission	and	469	

the	way	transmission	arises	from	an	ecological	context	and	mosquito	blood	feeding	470	

behavior.	471	

An	alternative	way	of	understanding	the	ecology	of	MBPT,	articulated	by	Hackett	for	472	

malaria,	is	to	assume	that	local	transmission	is	a	complex	puzzle	that	is,	like	chess,	built	up	473	
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from	a	few	simple	pieces	(98).	Following	Hackett’s	logic,	Najera	et	al.	proposed	an	474	

alternative	theory	of	malaria	control	based	on	ecological	or	social	contexts	giving	rise	to	475	

malaria	transmission	(99).	They	discussed	six	specific	ecological	settings:	the	African	476	

savanna,	plains	and	valleys	outside	Africa,	forest	and	forest	fringe	areas,	highland	fringe	477	

and	desert	fringe,	seashore	and	coastal	malaria,	and	urban	malaria.	Four	specific	patterns	478	

associated	with	occupations	or	social	conditions	were	agricultural	colonization	of	jungle	479	

areas,	gold	and	gem	mining,	migrant	agricultural	labor,	and	displaced	populations.	480	

Macdonald	similarly	found	a	categorical	approach	useful	when	he	proposed	three	481	

categories	of	transmission:	stable,	unstable,	and	epidemic	(33).	Macdonald	was	as	482	

interested	in	endemic	malaria	(33)	as	well	as	epidemics	(100),	but	what	set	his	approach	483	

apart	was	the	development	and	application	of	a	quantitative	theory	based	on	 R
0
	to	484	

understand	both	kinds	of	phenomena.	Could	the	rigor	of	Macdonald’s	quantitative	485	

approach	be	applied	to	codify	these	categories	for	malaria,	to	identify	some	useful	set	of	486	

categories	for	mosquito‐borne	pathogens	of	humans,	or	of	complex	transmission	dynamics	487	

of	pathogens	with	many	mosquito	and	vertebrate	animal	hosts?	If	so,	how	does	488	

transmission	in	these	ecological	settings	differ	in	ways	that	are	not	captured	by R
0
? 	489	

One	way	to	fuse	the	quantitative	methodology	of	the	Ross‐Macdonald	model	with	the	490	

qualitative	view	adopted	by	Hackett	and	others	is	to	build	models	that	identify	the	basic	491	

components,	which	will	likely	include	many	parts	of	the	formula	for	vectorial	capacity.	492	

What	merits	more	attention	is	a	systematic	way	of	looking	at	the	way	complexity	arises	493	

from	the	way	the	pieces	fit	together.	The	fundamental	questions	are	about	heterogeneity	in	494	

transmission	and	the	biology	that	underlies	highly	local	and	focal	transmission;	i.e.,	poorly	495	

mixed	populations.	Just	as	the	theory	of	sexually	transmitted	pathogens	successfully	recast	496	

itself	around	the	concept	of	heterogeneity	in	numbers	of	sexual	partners	and	sexual	contact	497	

networks	in	network	models,	so	too	must	the	mathematical	theory	for	mosquito‐borne	498	

pathogens	recast	itself	around	the	underlying	biology	if	we	are	to	understand	and	quantify	499	

how	ecological	and	social	contexts	affect	MBPT	dynamics	and	disease	control.	500	

A	useful	concept	around	which	the	theory	of	MBPT	can	be	recast	is	that	of	key	501	

epidemiological	encounters	(Fig.	3).	It	is	well	known	that	the	key	encounter	for	mosquito‐502	
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borne	pathogens	is	the	blood	meal,	but	the	spatial	context	for	these	encounters	has	not	503	

been	carefully	examined	mathematically.	The	number,	timing,	and	intensity	of	encounters	504	

are	largely	a	function	of	how	many	mosquitoes	emerge	from	aquatic	environments	located	505	

near	areas	where	hosts	spend	time.	The	dynamics	of	larval	mosquitoes	in	aquatic	506	

environments	are	complex	and	poorly	understood,	depending	on	habitat	selection	by	egg‐507	

laying	adults,	biotic	and	abiotic	drivers	of	developmental	success,	and	how	and	the	extent	508	

to	which	density‐dependent	mortality	operates.	Following	emergence	from	these	509	

environments,	adult	female	mosquitoes	undergo	flights	for	nectar	feeding	and	mating	and	510	

then	an	appetitive	search	to	find	a	blood	meal	host,	a	short	flight	laden	with	blood	to	find	a	511	

place	to	rest,	a	search	to	find	a	suitable	aquatic	habitat	for	egg	laying,	and	then	a	repeated	512	

appetitive	quest	to	find	another	blood	meal	host	(101).	Given	that	the	mobility	of	513	

mosquitoes	is	on	average	somewhat	limited,	locations	where	blood	feeding	occurs	must	be	514	

close	to	other	resources	such	as	aquatic	habitat	and	resting	sites.	Mosquitoes	may	exercise	515	

choice	among	locations	for	host	seeking	and	among	individual	hosts	(102)	for	blood	516	

feeding	based	on	their	attributes,	including	CO2	emission,	odors	(103),	body	size	(104,	517	

105),	type	of	clothing	worn,	and	other	factors	including	elevation,	the	overall	diversity	of	518	

the	vertebrate	host	community	(92),	and	home,	nest,	or	habitat	type.	It	is	also	important	to	519	

bear	in	mind	that	hosts	are	also	heterogeneously	distributed	in	the	environment	and	are	520	

moving	targets	(106),	and	that	hosts	can	exhibit	defensive	or	avoidance	behavior,	possibly	521	

in	response	to	increased	biting	by	mosquitoes	(107).	The	risk	of	hosts	being	bitten	is	a	522	

function	of	where	and	at	what	time	of	day	they	frequent	locations	in	which	mosquitoes	are	523	

searching	for	blood	meals.	524	

Mosquito	biology	including	the	search	for	egg‐laying	sites	and	blood	feeding	strategies	thus	525	

emerge	as	important	elements	in	a	new	theory	that	affect	transmission	as	much	as	blood	526	

feeding	behavior.	Mosquito	strategies	can	range	from	active	questing	at	night	over	fairly	527	

long	distances,	such	as	by	Culex	in	agro‐ecosystems,	to	stationary	ambush	feeding	where	528	

species	such	as	Ae.	aegypti	or	Ae.	albopictus	wait	in	protected	areas	until	the	host	arrives.	529	

Similarly,	the	patterns	of	human	activity	and	mobility	in	relation	to	these	vector	search	and	530	

feeding	strategies	are	of	great	importance	for	understanding	transmission.	Recent	evidence	531	

suggests	that	human	social	networks	are	just	as	important	for	transmission	within	cities	as	532	
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mosquito	ecology	(108),	and	that	movement	networks	are	a	critical	element	of	533	

transmission	within	and	among	countries	(109,	110).	Similar	problems	arise	in	the	study	of	534	

complex	transmission	dynamics	involving	many	vectors	and	many	vertebrate	hosts	where	535	

contact	networks	must	contend	with	the	problems	of	territoriality,	seasonal	migration,	536	

aggregation	around	resources,	and	group	social	structure.	In	addition	to	defining	the	537	

context	for	key	encounters,	movement	of	mosquitoes	and	hosts	at	times	when	mosquitoes	538	

are	actively	feeding	jointly	govern	how	pathogens	spread	during	an	outbreak	and	persist	539	

over	time.	There	is	an	urgent	need	to	improve	the	methods	for	using	data	describing	540	

mosquito	and	vertebrate	host	mobility	to	understand	pathogen	transmission	dynamics	and	541	

persistence	across	scales	for	pathogens	as	different	as	chikungunya,	dengue,	malaria,	and	542	

filariasis.	543	

A	closely	related	core	concern	is	that	statistical	theory	must	also	be	developed	to	inform	544	

the	spatial	scales	at	which	the	metrics	can	be	used	to	estimate	transmission	in	models	or	to	545	

define	appropriate	sampling	frames.	The	methodology	used	to	analyze	transmission	546	

metrics	has	improved	substantially	since	1970,	but	like	transmission	models,	there	has	547	

been	very	little	progress	in	the	basic	metrology	or	in	relating	those	metrics	to	transmission	548	

or	control.	In	particular,	the	metrics	themselves	have	been	poorly	validated,	and	the	549	

sampling	properties	of	the	metrics	(i.e.,	bias	and	measurement	errors)	remain	poorly	550	

defined.	551	

Concerns	about	the	statistical	properties	of	the	metrics	are	not	just	hypothetical.	The	552	

processes	of	setting	coverage	targets	to	meet	national	goals,	of	evaluating	the	impact	of	553	

mass	interventions,	of	designing	trials	for	interventions	that	reduce	transmission,	or	of	554	

understanding	transmission	rely	on	data	describing	the	intensity	and	scale	of	transmission.	555	

The	challenge	is	that	transmission	of	mosquito‐borne	pathogens	is	likely	heterogeneous	at	556	

every	scale.	In	such	an	environment,	what	is	the	appropriate	sampling	frame	for	measuring	557	

transmission?	Having	a	good	metric	is	often	the	rate‐limiting	step	for	inference,	so	the	558	

practical	way	forward	is	to	develop	theory	around	the	metrics.	What	windows	of	space	and	559	

time	are	valid	for	the	selected	metrics?	560	

If	dispersion	and	the	number	of	hosts	in	the	neighborhood	limits	transmission,	rather	than	561	
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vectorial	capacity,	then	thresholds	on	the	coverage	of	vaccines,	drugs,	and	other	host‐based	562	

interventions	may	not	scale	linearly	with	vectorial	capacity.	What	remains	unknown,	and	is	563	

highly	relevant	for	understanding	transmission	dynamics,	is	what	happens	to	transmission	564	

as	locally	available	hosts	become	saturated.	It	may	be	that,	despite	the	nonlinearities	in	565	

transmission	caused	by	heterogeneous	biting	and	local	transmission,	vectorial‐capacity‐566	

based	estimates	of	 R
0
	are	still	relevant	in	an	analysis	of	vector‐based	coverage	levels	and	567	

thresholds	to	eliminate	a	pathogen	from	an	area.	What	may	also	be	true	is	that	the	568	

thresholds	may	scale	differently	for	different	modes	of	control	depending	on	the	context.	569	

What	is	needed	now	is	a	new	approach	to	measuring	and	modeling	these	aspects	of	570	

transmission	that	can	lay	the	foundations	for	an	improved	understanding	of	MBPT	571	

dynamics	and	control.	572	

Conclusions 573	
The	Ross‐Macdonald	theory	established	a	critically	important	framework	for	the	study	of	574	

infectious	diseases,	and	it	has	matured	substantially	over	the	past	century.	The	central	idea	575	

is	based	on	the	notion	of	transmission	intensity,	which	is	implicit	in	Macdonald’s	formula	576	

for R
0
.	There	are	good	reasons	to	continue	to	use	this	approach,	while	also	carefully	577	

questioning	its	many	simplifying	assumptions.	The	question	is	not	whether	 R
0
	and	578	

accompanying	theory	is	wrong.	All	models	make	simplifying	assumptions,	all	scientific	579	

inference	is	based	on	some	kind	of	model	(i.e.,	including	statistical	models	and	all	kinds	of	580	

conceptual	models),	and	simple	models	are	often	exceedingly	useful.	The	issue	is	whether	581	

the	omission	of	certain	biological	features	undermines	the	application	of	the	model.	In	this	582	

case,	does	including	heterogeneous	transmission	improve	conclusions	based	on	 R
0
	and	583	

predictions	about	the	effective	control	of	mosquito‐borne	diseases?	584	

The	observation	that	most	heterogeneity	in	transmission	shares	a	common	spatial	585	

dimension	begs	for	the	development	of	a	spatially	rich	theory	that	can	accommodate	the	586	

limited	movement	of	individual	mosquitoes	and	hosts	in	variable	and	sparsely	or	densely	587	

populated	landscapes.	Movement	is	especially	critical	for	arboviruses	and	other	strongly	588	

immunizing	infections	where	host	populations	become	progressively	immune	and	the	589	
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number	of	susceptible	hosts	can	be	depleted.	Similar	issues	will	likely	affect	other	590	

pathogens,	as	well.	General	theory,	however,	remains	tethered	to	the	core	assumptions	and	591	

non‐spatial	structure	of	the	Ross‐Macdonald	model. 592	

Analytical	insights	from	theory	developed	for	directly	transmitted	pathogens	may	be	593	

required	to	guide	the	development	of	detailed	simulations,	to	identify	priorities	for	field	594	

research,	and	ultimately	to	guide	the	design	of	policy.	The	seeds	of	the	new	generation	of	595	

theory	that	we	call	for	have	been	sown	by	models	of	mosquito‐borne	pathogens	(3,	34,	45,	596	

47,	63,	92‐96),	but	the	continued	development,	investigation,	and	widespread	adoption	of	597	

such	approaches	and	connection	with	the	underlying	biology	have	not	yet	been	fully	598	

realized.	Advances	in	theory	developed	for	directly	transmitted	pathogens,	including	599	

theory	describing	poor	mixing	and	networks,	have	not	yet	been	incorporated	into	the	600	

theory	for	mosquito‐borne	pathogens.	The	concepts	of	networks	and	social	distance	have	601	

long	been	ignored,	but	there	is	now	evidence	of	their	importance	for	MBPT	(108).	602	

Development	of	a	rich	theoretical	perspective	on	networks,	motivated	by	the	biology	of	603	

mosquitoes	and	their	hosts,	would	be	a	valuable	addition	to	mosquito‐borne	pathogen	604	

theory. 605	

The	success	of	any	new	theory	will	be	measured	by	its	utility	in	specific	contexts	and	by	its	606	

ability	to	inform	decisions	weighing	the	impacts	of	various	modes	of	control	against	their	607	

costs.	Ross‐Macdonald	theory	provides	specific	advice	about	the	likely	effects	of	drugs,	608	

vaccines,	and	mosquito	control	on	pathogen	transmission,	and	Macdonald’s	formula	for R
0
	609	

is	highly	compelling	and	frequently	used.	On	the	other	hand,	it	is	difficult	to	place	610	

confidence	in	this	kind	of	advice	when	tests	of	the	theory	continue	to	expose	inadequacies.	611	

Should	such	a	theory	be	used	to	determine	how	finite	global	resources	are	allocated?	For	612	

example,	should	resources	be	diverted	to	contain	artemisinin‐resistant	Plasmodium	613	

falciparum	before	it	spreads	beyond	Southeast	Asia?	How	should	resources	be	reallocated	614	

in	light	of	knowledge	of	the	distribution	of	pyrethroid-resistant	Anopheles	gambiae	in	615	

Africa	and	elsewhere?	How	could	a	new	vaccine	against	malaria	or	dengue	be	most	616	

effectively	deployed,	and	should	resources	be	diverted	from	existing	mosquito	control	617	

programs	to	do	so?	Is	pathogen	elimination	the	optimal	strategy	for	a	country,	and	if	so,	on	618	
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what	time	frame?	How	can	limited	resources	be	best	used	to	detect	and	respond	to	an	619	

introduced	exotic	pathogen	(e.g.,	Rift	Valley	fever	virus)?	Some	sort	of	model	will	be	used	to	620	

answer	all	of	these	questions,	but	only	models	that	address	the	unexplored	topics	identified	621	

herein	can	accurately	weigh	costs	against	benefits	across	different	scales	of	transmission	622	

intensity	and	levels	of	investment.	No	single	approach	is	likely	to	be	optimal	for	every	623	

question,	so	a	hierarchy	of	models	and	modeling	approaches	is	needed	to	identify	624	

priorities,	which	will	subsequently	require	empirical	validation.	Given	the	inherent	625	

uncertainties,	the	best	way	to	achieve	a	robust	policy	recommendation	is	through	the	626	

comparison	of	multiple,	independently	derived	models. 627	

Advancing	the	theory	of	mosquito‐borne	pathogen	transmission	requires	a	new	synthesis	628	

that	realistically	acknowledges	the	ecological	context	of	mosquito	blood	feeding	and	its	629	

quantitative	impact	on	transmission.	Specific	objectives	should	be	to	develop	new	models	630	

that	provide	guidance	about	which	details	are	most	relevant	for	increased	understanding	of	631	

transmission	dynamics	and	what	types	of	interdisciplinary	collaborations	are	necessary	to	632	

make	those	advancements.	These	must	be	rigorously	linked	to	field	studies	and	extensive	633	

data	on	transmission	metrics	that	has	already	been	generated,	but	there	is	also	a	need	to	634	

develop	new	theory	exploring	mosquito	ecology	and	behavior,	mosquito	and	vertebrate	635	

host	movement,	spatial	heterogeneity	in	complex	epidemiological	landscapes,	and	the	way	636	

those	factors	lead	to	key	epidemiological	encounters.	These	are	among	the	most	promising	637	

frontiers	with	potential	for	high	impact	in	mosquito‐borne	disease	modeling	research	and	638	

its	application	in	disease	prevention. 639	
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