2,118 research outputs found

    Evc2 is a positive modulator of Hedgehog signalling that interacts with Evc at the cilia membrane and is also found in the nucleus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evc is essential for Indian Hedgehog (Hh) signalling in the cartilage growth plate. The gene encoding Evc2 is in close proximity in divergent orientation to <it>Evc </it>and mutations in both human genes lead to the chondrodysplasia Ellis-van Creveld syndrome.</p> <p>Results</p> <p>Bioinformatic analysis reveals that the <it>Evc </it>and <it>Evc2 </it>genes arose through a duplication event early in metazoan evolution and were subsequently lost in arthropods and nematodes. Here we demonstrate that Evc2 is essential for Hh pathway activation in response to the Smo agonist purmorphamine. A yeast two-hybrid screen using Evc as bait identified Evc2 as an Evc binding partner and we confirmed the interaction by immunoprecipitation. We developed anti-Evc2 antibodies and show that Evc2 and Evc co-localize at the basal body and also on primary cilia. In transfected cells, basal body and cilia localization is observed when Evc and Evc2 constructs are co-transfected but not when either construct is transfected individually. We show that Evc and Evc2 are cilia transmembrane proteins, the C-terminus for both being intracellular and Evc2, but not Evc, having an extracellular portion. Furthermore, Evc is absent at the basal body in Evc2 null cells. Using Western blots of cytoplasmic and nuclear protein, we also demonstrate that full length Evc2 but not Evc, is located in the nucleus.</p> <p>Conclusions</p> <p>We demonstrate for the first time that Evc2 is a positive regulator of the Hh signalling pathway and that it is located at the basal body of primary cilia. We show that the presence of Evc and Evc2 at the basal body and cilia membrane is co-dependent. In addition, Evc2, but not Evc, is present in the cell nucleus suggesting movement of Evc2 between the cilium and nucleus.</p

    In Cellulo Bioorthogonal Catalysis by Encapsulated AuPd Nanoalloys. Overcoming Intracellular Deactivation

    Get PDF
    Bioorthogonal metallocatalysis has opened up a xenobiotic route to perform nonenzymatic catalytic transformations in living settings. Despite their promising features, most metals are deactivated inside cells by a myriad of reactive biomolecules, including biogenic thiols, thereby limiting the catalytic functioning of these abiotic reagents. Here we report the development of cytocompatible alloyed AuPd nanoparticles with the capacity to elicit bioorthogonal depropargylations with high efficiency in biological media. We also show that the intracellular catalytic performance of these nanoalloys is significantly enhanced by protecting them following two different encapsulation methods. Encapsulation in mesoporous silica nanorods resulted in augmented catalyst reactivity, whereas the use of a biodegradable PLGA matrix increased nanoalloy delivery across the cell membrane. The functional potential of encapsulated AuPd was demonstrated by releasing the potent chemotherapy drug paclitaxel inside cancer cells. Nanoalloy encapsulation provides a novel methodology to develop nanoreactors capable of mediating new-to-life reactions in cell

    Noxious effects of riot control agents on the ocular surface: Pathogenic mechanisms and management

    Get PDF
    Riot Control Agents (RCAs) are chemical compounds used by law enforcement agencies to quell violent demonstrations as an alternative to lethal force and as part of police/military training. They are also known as tear gases because of the hallmark ocular irritation and lacrimation they cause. The most common RCAs include oleoresin capsicum (contained in Mace and pepper spray), chlorobenzylidene malononitrile, dibenzoxazepine, and chloroacetophenone (previously the main content of Mace); some of which have been in use for decades. Their immediate incapacitating effects are mediated through polymodal afferent fibers innervating the corneal surface, inducing the release of peptides that cause neurogenic inflammation. Although previously thought to have only transient effects on exposed patients more severe complications such as corneal stromal opacities, corneal neovascularization, neurotrophic keratopathy, conjunctival necrosis, and pseudopterygium can occur. Concerningly, the lack of research and specific therapies restrict the current management to decontamination and symptom-tailored support. This manuscript will provide an overview of the toxic mechanisms of RCAs, their clinical manifestations, and current therapy after exposure to tear gases

    Biallelic mutations in DYNC2LI1 are a rare cause of Ellis-van Creveld syndrome

    Get PDF
    Ellis van Creveld syndrome (EvC) is a chondral and ectodermal dysplasia caused by biallelic mutations in the EVC, EVC2 and WDR35 genes. A proportion of cases with clinical diagnosis of EvC, however, do not carry mutations in these genes. To identify the genetic cause of EvC in a cohort of mutation-negative patients, exome sequencing was undertaken in a family with three affected members, and mutation scanning of a panel of clinically and functionally relevant genes was performed in 24 additional subjects with features fitting/overlapping EvC. Compound heterozygosity for the c.2T&gt;C (p.Met1?) and c.662C&gt;T (p.Thr221Ile) variants in DYNC2LI1, which encodes a component of the intraflagellar transport-related dynein-2 complex previously found mutated in other short-rib thoracic dysplasias, was identified in the three affected members of the first family. Targeted resequencing detected compound heterozygosity for the same missense variant and a frameshift change (p.Val141*) in two siblings with EvC from a second family, while a newborn with a more severe phenotype carried two DYNC2LI1 truncating variants. Our findings indicate that DYNC2LI1 mutations are associated with a wider clinical spectrum than previously appreciated, including EvC, with the severity of the phenotype likely depending on the extent of defective DYNC2LI1 function

    Mutations in SCNM1 cause orofaciodigital syndrome due to minor intron splicing defects affecting primary cilia

    Get PDF
    Orofaciodigital syndrome (OFD) is a genetically heterogeneous ciliopathy characterized by anomalies of the oral cavity, face, and digits. We describe individuals with OFD from three unrelated families having bi-allelic loss-of-function variants in SCNM1 as the cause of their condition. SCNM1 encodes a protein recently shown to be a component of the human minor spliceosome. However, so far the effect of loss of SCNM1 function on human cells had not been assessed. Using a comparative transcriptome analysis between fibroblasts derived from an OFD-affected individual harboring SCNM1 mutations and control fibroblasts, we identified a set of genes with defective minor intron (U12) processing in the fibroblasts of the affected subject. These results were reproduced in SCNM1 knockout hTERT RPE-1 (RPE-1) cells engineered by CRISPR-Cas9-mediated editing and in SCNM1 siRNA-treated RPE-1 cultures. Notably, expression of TMEM107 and FAM92A encoding primary cilia and basal body proteins, respectively, and that of DERL2, ZC3H8, and C17orf75, were severely reduced in SCNM1-deficient cells. Primary fibroblasts containing SCNM1 mutations, as well as SCNM1 knockout and SCNM1 knockdown RPE-1 cells, were also found with abnormally elongated cilia. Conversely, cilia length and expression of SCNM1-regulated genes were restored in SCNM1-deficient fibroblasts following reintroduction of SCNM1 via retroviral delivery. Additionally, functional analysis in SCNM1-retrotransduced fibroblasts showed that SCNM1 is a positive mediator of Hedgehog (Hh) signaling. Our findings demonstrate that defective U12 intron splicing can lead to a typical ciliopathy such as OFD and reveal that primary cilia length and Hh signaling are regulated by the minor spliceosome through SCNM1 activity.This work was supported by a grant from the Spanish Ministry of Science and Innovation (PID2019-105620RB-I00/AEI/10.13039/501100011033)

    EVC-EVC2 complex stability and ciliary targeting are regulated by modification with ubiquitin and SUMO

    Get PDF
    Ellis van Creveld syndrome and Weyers acrofacial dysostosis are two rare genetic diseases affecting skeletal development. They are both ciliopathies, as they are due to malfunction of primary cilia, microtubule-based plasma membrane protrusions that function as cellular antennae and are required for Hedgehog signaling, a key pathway during skeletal morphogenesis. These ciliopathies are caused by mutations affecting the EVC-EVC2 complex, a transmembrane protein heterodimer that regulates Hedgehog signaling from inside primary cilia. Despite the importance of this complex, the mechanisms underlying its stability, targeting and function are poorly understood. To address this, we characterized the endogenous EVC protein interactome in control and Evc-null cells. This proteomic screen confirmed EVC’s main known interactors (EVC2, IQCE, EFCAB7), while revealing new ones, including USP7, a deubiquitinating enzyme involved in Hedgehog signaling. We therefore looked at EVC-EVC2 complex ubiquitination. Such ubiquitination exists but is independent of USP7 (and of USP48, also involved in Hh signaling). We did find, however, that monoubiquitination of EVC-EVC2 cytosolic tails greatly reduces their protein levels. On the other hand, modification of EVC-EVC2 cytosolic tails with the small ubiquitin-related modifier SUMO3 has a different effect, enhancing complex accumulation at the EvC zone, immediately distal to the ciliary transition zone, possibly via increased binding to the EFCAB7-IQCE complex. Lastly, we find that EvC zone targeting of EVC-EVC2 depends on two separate EFCAB7-binding motifs within EVC2’s Weyers-deleted peptide. Only one of these motifs had been characterized previously, so we have mapped the second herein. Altogether, our data shed light on EVC-EVC2 complex regulatory mechanisms, with implications for ciliopathies

    Evidence for classification of c.1852_1853AA>GC in MLH1 as a neutral variant for Lynch syndrome

    Get PDF
    Background: Lynch syndrome (LS) is an autosomal dominant inherited cancer syndrome characterized by early onset cancers of the colorectum, endometrium and other tumours. A significant proportion of DNA variants in LS patients are unclassified. Reports on the pathogenicity of the c.1852_1853AA>GC (p.Lys618Ala) variant of the MLH1 gene are conflicting. In this study, we provide new evidence indicating that this variant has no significant implications for LS. Methods: The following approach was used to assess the clinical significance of the p.Lys618Ala variant: frequency in a control population, case-control comparison, co-occurrence of the p.Lys618Ala variant with a pathogenic mutation, co-segregation with the disease and microsatellite instability in tumours from carriers of the variant. We genotyped p.Lys618Ala in 1034 individuals (373 sporadic colorectal cancer [CRC] patients, 250 index subjects from families suspected of having LS [revised Bethesda guidelines] and 411 controls). Three well-characterized LS families that fulfilled the Amsterdam II Criteria and consisted of members with the p.Lys618Ala variant were included to assess co-occurrence and co-segregation. A subset of colorectal tumour DNA samples from 17 patients carrying the p.Lys618Ala variant was screened for microsatellite instability using five mononucleotide markers. Results: Twenty-seven individuals were heterozygous for the p.Lys618Ala variant; nine had sporadic CRC (2.41%), seven were suspected of having hereditary CRC (2.8%) and 11 were controls (2.68%). There were no significant associations in the case-control and case-case studies. The p.Lys618Ala variant was co-existent with pathogenic mutations in two unrelated LS families. In one family, the allele distribution of the pathogenic and unclassified variant was in trans, in the other family the pathogenic variant was detected in the MSH6 gene and only the deleterious variant co-segregated with the disease in both families. Only two positive cases of microsatellite instability (2/17, 11.8%) were detected in tumours from p.Lys618Ala carriers, indicating that this variant does not play a role in functional inactivation of MLH1 in CRC patients. Conclusions: The p.Lys618Ala variant should be considered a neutral variant for LS. These findings have implications for the clinical management of CRC probands and their relatives.Generalitat Valenciana in Spain (AP140/08) and the Biomedical Research Foundation from the Hospital of Elche, Spain (FIBElx0902). Conselleria de Educació (Generalitat Valenciana); Fundacion Juan Peran-Pikolinos; Fundacion Carolina-BBVA and Fondo Investigación Sanitaria (FI07/00303). Instituto de Salud Carlos III (INT09/208)
    corecore