2,556 research outputs found

    Functional analysis of cancer-associated EGFR mutants using a cellular assay with YFP-tagged EGFR intracellular domain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The presence of EGFR kinase domain mutations in a subset of NSCLC patients correlates with the response to treatment with the EGFR tyrosine kinase inhibitors gefitinib and erlotinib. Although most EGFR mutations detected are short deletions in exon 19 or the L858R point mutation in exon 21, more than 75 different EGFR kinase domain residues have been reported to be altered in NSCLC patients. The phenotypical consequences of different EGFR mutations may vary dramatically, but the majority of uncommon EGFR mutations have never been functionally evaluated.</p> <p>Results</p> <p>We demonstrate that the relative kinase activity and erlotinib sensitivity of different EGFR mutants can be readily evaluated using transfection of an YFP-tagged fragment of the EGFR intracellular domain (YFP-EGFR-ICD), followed by immunofluorescence microscopy analysis. Using this assay, we show that the exon 20 insertions Ins770SVD and Ins774HV confer increased kinase activity, but no erlotinib sensitivity. We also show that, in contrast to the common L858R mutation, the uncommon exon 21 point mutations P848L and A859T appear to behave like functionally silent polymorphisms.</p> <p>Conclusion</p> <p>The ability to rapidly obtain functional information on EGFR variants of unknown relevance using the YFP-EGFR-ICD assay might prove important in the future for the management of NSCLC patients bearing uncommon EGFR mutations. In addition, our assay may be used to determine the response of resistant EGFR mutants to novel second-generation TKIs.</p

    Highly conductive microporous carbon fibers by electrospinning of lignin/phosphoric acid/ethanol solutions

    Get PDF
    This contribution reports the preparation of electrospun lignin-based carbon fibers at different carbonization temperatures and the influence of heat treatments at temperatures ranging from 900 to 1600 ÂșC. The influence of the addition of phosphoric acid in the initial electrospinning solution on the structural ordering, electrical conductivity and porosity development of the final carbon fibers is studied in detail. Alcell lignin fibers were electrospun using a coaxial electrospinning device following the procedure previously reported by our research group. Electrospun H3PO4-lignin fibers were prepared in the same device by addition of phosphoric acid to the lignin solution using mass ratios of 0.1 and 0.3. The electrospun fibers were stabilized in air at 200 ÂșC, using a slow heating rate and carbonized under inert atmosphere at temperatures between 500 and 900 ÂșC. In addition, the fibers carbonized at 900 ÂșC were heat treated at temperatures between 1200 and 1600 ÂșC. The high temperature heat treatment removes most of the heteroatoms (O, P) for both carbon fibers. However, the surface area of the phosphorous containing carbon fibers is mostly preserved after the heat treatment, while a large porosity shrinkage is observed for the pure lignin-derived fibers. Thus, microporous carbon fibers with large electrical conductivity values have been obtained by heat treatment at 1600 ÂșC of P-containing electrospun carbon fibers.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech

    A Deep Learning-Based Multimodal Architecture to predict Signs of Dementia

    Get PDF
    This paper proposes a multimodal deep learning architecture combining text and audio information to predict dementia, a disease which affects around 55 million people all over the world and makes them in some cases dependent people. The system was evaluated on the DementiaBank Pitt Corpus dataset, which includes audio recordings as well as their transcriptions for healthy people and people with dementia. Different models have been used and tested, including Convolutional Neural Networks (CNN) for audio classification, Transformers for text classification, and a combination of both in a multimodal ensemble. These models have been evaluated on a test set, obtaining the best results by using the text modality, achieving 90.36% accuracy on the task of detecting dementia. Additionally, an analysis of the corpus has been conducted for the sake of explainability, aiming to obtain more information about how the models generate their predictions and identify patterns in the data.We would like to thank “A way of making Europe” European Regional Development Fund (ERDF) and MCIN/AEI/10.13039/501100011033 for supporting this work under the MoDeaAS project (grant PID2019-104818RB-I00) and AICARE project (grant SPID202200X139779IV0). Furthermore, we would like to thank Nvidia for their generous hardware donation that made these experiments possible

    A Fast 0.5 T Prepolarizer Module for Preclinical Magnetic Resonance Imaging

    Get PDF
    We present a magnet and high power electronics for Prepolarized Magnetic Resonance Imaging (PMRI) in a home-made, special-purpose preclinical system designed for simultaneous visualization of hard and soft biological tissues. The sensitivity of MRI systems grows with field strength, but so do their costs. PMRI can boost the signal-to-noise ratio (SNR) in affordable low-field scanners by means of a long and strong magnetic pulse. However, this must be rapidly switched off prior to the imaging pulse sequence, in timescales shorter than the spin relaxation (or T1) time of the sample. We have operated our prepolarizer at up to 0.5 T and demonstrated enhanced magnetization, image SNR and tissue contrast with PMRI of tap water, an ex vivo mouse brain and food samples. These have T1 times ranging from hundreds of milli-seconds to single seconds, while the preliminary high-power electronics setup employed in this work can switch off the prepolarization field in tens of milli-seconds. In order to make this system suitable for solid-state matter and hard tissues, which feature T1 times as short as 10 ms, we are developing new electronics which can cut switching times to ~ 300 ÎŒs. This does not require changes in the prepolarizer module, opening the door to the first experimental demonstration of PMRI on hard biological tissues

    MiRNA Expression Profile of Human Subcutaneous Adipose and during Adipocyte Differentiation

    Get PDF
    BACKGROUND: Potential regulators of adipogenesis include microRNAs (miRNAs), small non-coding RNAs that have been recently shown related to adiposity and differentially expressed in fat depots. However, to date no study is available, to our knowledge, regarding miRNAs expression profile during human adipogenesis. Thereby, the aim of this study was to investigate whether miRNA pattern in human fat cells and subcutaneous adipose tissue is associated to obesity and co-morbidities and whether miRNA expression profile in adipocytes is linked to adipogenesis. METHODOLOGY/PRINCIPAL FINDINGS: We performed a global miRNA expression microarray of 723 human and 76 viral mature miRNAs in human adipocytes during differentiation and in subcutaneous fat samples from non-obese (n = 6) and obese with (n = 9) and without (n = 13) Type-2 Diabetes Mellitus (DM-2) women. Changes in adipogenesis-related miRNAs were then validated by RT-PCR. Fifty of 799 miRNAs (6.2%) significantly differed between fat cells from lean and obese subjects. Seventy miRNAs (8.8%) were highly and significantly up or down-regulated in mature adipocytes as compared to pre-adipocytes. Otherwise, 17 of these 799 miRNAs (2.1%) were correlated with anthropometrical (BMI) and/or metabolic (fasting glucose and/or triglycerides) parameters. We identified 11 miRNAs (1.4%) significantly deregulated in subcutaneous fat from obese subjects with and without DM-2. Interestingly, most of these changes were associated with miRNAs also significantly deregulated during adipocyte differentiation. CONCLUSIONS/SIGNIFICANCE: The remarkable inverse miRNA profile revealed for human pre-adipocytes and mature adipocytes hints at a closely crosstalk between miRNAs and adipogenesis. Such candidates may represent biomarkers and therapeutic targets for obesity and obesity-related complications

    Tratamiento del cĂĄncer de prĂłstata en funciĂłn de la esperanza de vida, la comorbilidad y las guĂ­as de prĂĄctica clĂ­nica

    Get PDF
    En un nĂșmero anterior de la revista de Anales del Sistema Sanitario de Navarra, BarcelĂł y col realizaron una interesante y Ăștil revisiĂłn de los pacientes con cĂĄncer de prĂłstata tratados en un gran centro hospitalario español durante un año, centrĂĄndose en sus caracterĂ­sticas basales, el tratamiento realizado y el grado de seguimiento de las GuĂ­as de PrĂĄctica ClĂ­nica (GPC) y las complicaciones asociadas a los tratamientos realizados

    Label-Free Plasmonic Biosensor for Rapid, Quantitative, and Highly Sensitive COVID-19 Serology: Implementation and Clinical Validation

    Get PDF
    COVID-19; Biosensor plasmĂłnico; SerologĂ­aCOVID-19; Biosensor plasmĂČnic; SerologiaCOVID-19; Plasmonic biosensor; SerologySerological tests are essential for the control and management of COVID-19 pandemic (diagnostics and surveillance, and epidemiological and immunity studies). We introduce a direct serological biosensor assay employing proprietary technology based on plasmonics, which offers rapid (<15 min) identification and quantification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in clinical samples, without signal amplification. The portable plasmonic device employs a custom-designed multiantigen (RBD peptide and N protein) sensor biochip and reaches detection limits in the low ng mL–1 range employing polyclonal antibodies. It has also been implemented employing the WHO-approved anti-SARS-CoV-2 immunoglobulin standard. A clinical validation with COVID-19 positive and negative samples (n = 120) demonstrates its excellent diagnostic sensitivity (99%) and specificity (100%). This positions our biosensor as an accurate and easy-to-use diagnostics tool for rapid and reliable COVID-19 serology to be employed both at laboratory and decentralized settings for the disease management and for the evaluation of immunological status during vaccination or treatment.ICN2 and UVE acknowledge financial support from H2020 Research and Innovation Programme of the European Commission (H202-SC1-PHE-Coronavirus-2020, CONVAT Project, No. 101003544). The ICN2 is funded by the CERCA program/Generalitat de Catalunya and supported by the Severo Ochoa Centres of Excellence program funded by the Spanish Research Agency (AEI, grant no. SEV-2017-0706). ICN2 group is very grateful to EPI Industries (Barcelona, Spain) for its kind donation supporting our research in COVID-19. O.C.-L. acknowledges the economic support from the Spanish Ministry of Science and Innovation and the Spanish Research Agency and the European Social Fund (ESF) (ref. BES-2017-080527) linked to the TEC 2016-78515-R project Predict. A part of the work was supported by the European Virus Archive GLOBAL (EVA-GLOBAL) project that has received funding from the EU Horizon 2020 (grant agreement No. 871029). A.T. and L.F.-B. acknowledge financial support from GENCAT-DGRIS COVID. We are indebted to all the patients who accepted to participate contributing to science advancement. We are indebted to the HCB-IDIBAPS Biobank for the human samples and data procurement and to the FundaciĂł GlĂČria Soler for its support to the COVIDBANK collection. We thank the IDIBAPS Biobank for its valuable contribution to sample processing and storage. The authors acknowledge the EU Horizon 2020 Program under grant agreement no. 644956 (RAIS project) for funding the Hospital Vall d’Hebron Biobank. The VHIR-HUVH is supported by Plan Nacional de I + D + i 2013-2016 and ISCIII-Ministerio de Ciencia e InnovaciĂłn, and Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0003)─cofinanced by European Development Regional Fund “A way to achieve Europe,” Operative program Intelligent Growth 2014. Part of the samples and data from patients included in this study were provided by the Vall d’Hebron University Hospital Biobank (PT17/0015/0047), integrated in the Spanish National Biobanks Network, and they were processed following standard operating procedures with the appropriate approval of the Ethical and Scientific Committee. The authors kindly appreciate the generous donation of samples and clinical data of the donors of the Sepsis Bank of HUVH Biobank and COVID-19 patients attended at HUVH

    Clinical Approach to Patients with Moderate-to-Severe Atopic Dermatitis: A Spanish Delphi Consensus

    Full text link
    Despite emerging evidence and advances in the management of atopic dermatitis there a lack of consensus regarding the diagnostic criteria, therapeutic approach, method to assess severity, and patient follow-up for this condition. An expert consensus study was conducted to provide recommendations on the management of patients with moderate-to-severe atopic dermatitis. The study used Delphi-like methodology based on a literature review, a summary of the scientific evidence, and a 2-round survey. The agreement of 60 panellists on 21 statements was evaluated. Consensus was predefined as >= 80% agreement of all respondents. In the first round 6 statements reached consensus. Unanimous consensus was achieved regarding therapeutic goals and patient satisfaction (maintained in the long term and periodic goals reassessment recommended every 3-6 months). In the second round, half of the statements reached consensus, all related to patient follow-up, treatment goals, and atopic comorbidities. The statements that did not reach consensus were related to diagnosis (biomarkers, allergy, and food testing) and starting patients on conventional systemic treatment rather than advanced treatment. The study assessed expert opinion regarding a variety of topics related to the clinical approach to patients with moderate-to-severe atopic dermatitis, in order to provide guidance on the diagnosis and management of patients with atopic dermatitis

    Endoscopical and pathological dissociation in severe colitis induced by immune-checkpoint inhibitors

    Get PDF
    Checkpoint inhibitors have improved the survival of patients with advanced tumors and show a manageable toxicity profile. However, auto-immune colitis remains a relevant side effect, and combinations of anti-PD1/PDL1 and anti-CTLA-4 increase its incidence and severity. Here, we report the case of a 50-year-old patient diagnosed with stage IV cervical cancer that relapsed following radical surgery, external radiation/brachytherapy and standard chemotherapy. She was subsequently treated with Nivolumab and Ipilimumab combination and developed grade 2 colitis presenting a dissociation between endoscopic and pathological findings. At cycle 10 the patient reported grade 3 diarrhea and abdominal discomfort, without blood or mucus in the stools. Immunotherapy was withheld and a colonoscopy was performed, showing normal mucosa in the entire colon. Puzzlingly, histologic evaluation of randomly sampled mucosal biopsy of the distal colon showed an intense intraepithelial lymphocyte infiltration with crypt loss and some regenerating crypts with a few apoptotic bodies set in a chronically inflamed lamina propria, consistent with the microscopic diagnosis of colitis. Treatment with methylprednisolone 2 mg/kg was initiated which led to a decrease in the number of stools to grade 1. Additional investigations to exclude other causes of diarrhea rendered negative results. The patient experienced a major partial response and, following the resolution of diarrhea, she was re-challenged again with immunotherapy, with the reappearance of grade 2 diarrhea, leading to permanent immunotherapy interruption. We conclude and propose that performing random colonic biopsies should be considered in cases of immune checkpoint-associated unexplained diarrhea, even when colonoscopy shows macroscopically normal colonic mucosa inflammatory lesions

    Cytokines in clinical cancer immunotherapy

    Get PDF
    Cytokines are soluble proteins that mediate cell-to-cell communication. Based on the discovery of the potent anti-tumour activities of several pro-inflammatory cytokines in animal models, clinical research led to the approval of recombinant interferon-alpha and interleukin-2 for the treatment of several malignancies, even if efficacy was only modest. These early milestones in immunotherapy have been followed by the recent addition to clinical practice of antibodies that inhibit immune checkpoints, as well as chimeric antigen receptor T cells. A renewed interest in the anti-tumour properties of cytokines has led to an exponential increase in the number of clinical trials that explore the safety and efficacy of cytokine-based drugs, not only as single agents, but also in combination with other immunomodulatory drugs. These second-generation drugs under clinical development include known molecules with novel mechanisms of action, new targets, and fusion proteins that increase half-life and target cytokine activity to the tumour microenvironment or to the desired effector immune cells. In addition, the detrimental activity of immunosuppressive cytokines can be blocked by antagonistic antibodies, small molecules, cytokine traps or siRNAs. In this review, we provide an overview of the novel trends in the cytokine immunotherapy field that are yielding therapeutic agents for clinical trials
    • 

    corecore