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This paper proposes a multimodal deep learning architecture combining text and audio information to
predict dementia, a disease which affects around 55 million people all over the world and makes them
in some cases dependent people. The system was evaluated on the DementiaBank Pitt Corpus dataset,
which includes audio recordings as well as their transcriptions for healthy people and people with de-
mentia. Different models have been used and tested, including Convolutional Neural Networks (CNN)
for audio classification, Transformers for text classification, and a combination of both in a multimodal
ensemble. These models have been evaluated on a test set, obtaining the best results by using the text
modality, achieving 90.36% accuracy on the task of detecting dementia. Additionally, an analysis of the
corpus has been conducted for the sake of explainability, aiming to obtain more information about
how the models generate their predictions and identify patterns in the data.
� 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nowadays, around 55 million people in the world have demen-
tia, which is more commonly seen in older people but can also af-
fect younger ones. Dementia is a syndrome which affects normal
cognitive functions. The most common form of dementia is Alzhei-
mer’s disease, which represents 60–70% of the cases [37]. This syn-
drome can affect each patient in different ways and has three
different stages: early, middle, and late stage. Each stage can have
different symptoms that can vary from losing track of time in the
early stage, forgetting recent events or becoming confused at home
in the middle stage, and finally having difficulties recognising rel-
atives or friends in a late stage. The late stage of dementia limits
the autonomous life of patients, so they will need a relative or a
professional to take care of them. Since dementia is usually related
to older people, the number of patients who have dementia is ex-
pected to grow in the following years. This is a problem which will
be more and more present in our society. Consequently, early de-
tection is critical to limit this disease.
The contribution of this work is the creation of an architecture
composed of different deep learning modules, which process text
transcriptions and audio recordings, to predict symptoms of de-
mentia, especially in the early stages of the disease. Even though
at the present time there is no cure for dementia, there are treat-
ments with or without medicines, such as therapies, that can help
with the symptoms of the patients. For this reason, the early detec-
tion of this syndrome is important, since this detection and treat-
ment can improve the quality of life of patients, their relatives,
and friends.

The present work continues and expands on the study con-
ducted by Ortiz-Perez, Ruiz-Ponce, Tomás and Garcia-Rodriguez
[26]. On one hand, a research was carried out to identify suitable
datasets for this task that include patients who suffer or may
suffer from dementia in the future. On the other hand, the most
promising deep learning techniques for text and audio classifica-
tion were analysed and tested. The chosen dataset for the exper-
iments proposed was the DementiaBank Pitt Corpus [5], which
contains data in different modalities, including text and audio.
A deep learning implementation using both modalities, separate-
ly and combined, was tested. Finally, in view of the good results
obtained using only textual information, an analysis was carried
out on the textual part of the dataset for the sake of
explainability.
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Table 1
Dementia datasets identified, including modalities and activities represented.

Dataset Modalities Activity

DementiaBank Pitt
Corpus

Audio and text Describe an image

DemCare Video, audio, and
physiological

Activities of daily
life

PRAXIS Gesture Video Basic gestures
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The remaining of the paper is organized as follows: Section 2 in-
troduces related work regarding dementia datasets and multi-
modal approaches; Section 3 describes in detail the dataset used
to test the present work; in Section 4 the different approaches
are presented, validating them on the DementiaBank Pitt Corpus
dataset and showing their performance in Section 5; Section 6
analyses the textual part of the dataset and Section 7 gives addi-
tional information on how the model makes predictions; finally,
Section 8 summarises conclusions and proposes future work.
2. Related work

This section presents relevant work carried out on the dementia
prediction tasks and the datasets available to this end. Additional-
ly, a review of recent approaches dealing with multimodal infor-
mation is included.
2.1. Datasets

As dementia is a highly sensitive topic, the number of datasets
available for public use is limited for privacy reasons. In the med-
ical domain, there are varied datasets on medical data, including
blood test results [19] and Magnetic Resonance Imaging [38], but
the focus of this section is exclusively on dementia pathology.

The following datasets were found in this area: DementiaBank
Pitt Corpus [5], DemCare [13], and Praxis Gesture [24]. The Demen-
tiaBank dataset consists of a set of audio recordings in which pa-
tients having dementia or not are asked to describe a clinical
image. The DemCare dataset is another multimodal dataset that
contains information in video and audio modalities, including also
information from physiological sensors. In this case, elderly pa-
tients (healthy or with dementia) were recorded while performing
activities from their daily life, such as reading an article, watering
plants, or preparing a drink. Finally, the PRAXIS Gesture dataset
consists of a set of videos where actors are recorded from a front
view making simple gestures, repeating them until they do them
correctly.

As shown in Table 1, where the main features of each dataset
are exposed, the PRAXIS Gesture dataset is the only one that does
not include multimodal data. The DementiaBank dataset provides
audio and their transcription. Finally, the DemCare dataset in-
cludes video, audio and physiological sensors data. All these data-
sets include patients who suffer from dementia and healthy
patients, but they perform different tasks in each dataset, from
simple ones like gestures to activities of their daily life or descrip-
tions of an image.

After analysing these datasets, PRAXIS Gesture was discarded
for this work due to the lack of multimodal features, since the anal-
ysis of multimodality is one of the main goals of this research, ex-
ploring how different modalities can work separately and
complement each other to improve the performance on dementia
prediction.

The DementiaBank Pitt Corpus dataset was chosen for the pre-
sent work due to its speech modality, which is an important fea-
ture of the dataset, as it can provide clear clues about the
presence of dementia symptoms. In contrast, DemCare does not fo-
cus on this feature and instead focuses more on a visual daily tasks
feature. From this visual information, dementia symptoms such as
confusion, disorientation, or difficulties with coordination and mo-
tor functions can be distinguished.

On the other hand, the speech modality in the DementiaBank
dataset allows observing other kinds of symptoms of dementia,
such as difficulty with communication, finding words, reasoning,
visual and spatial abilities, or planning. All of these abilities and
difficulties can be identified by performing a task, such as describ-
2

ing an image with many details, as in the case of the DementiaBank
dataset.

Another reason for choosing this dataset is that these difficul-
ties can be observed not only in the text when constructing sen-
tences to describe an image, but also in the analysis of the
recorded audio. Difficulties in speech can be indicated by pauses,
hesitation, doubts, and onomatopoeias. This is the main reason be-
hind the idea of exploring different modalities and how they corre-
late and complement each other to improve the final performance
of the system.

Therefore, the approach proposed in this work will deal with
both textual and audio modalities to properly process the Demen-
tiaBank Pitt Corpus dataset.
2.2. Multimodality

In their daily lives, people perceive the world with more than
one sense, for example, by combining visual and auditory stimuli.
This is the basic idea behind multimodal approaches that deal with
data in different modalities. An example of multimodal data is an
image and a text describing it, combining visual and textual infor-
mation in this way. This combination can improve the results in
understanding the scene present in the image, since modalities
can complement each other, giving a more complex and detailed
perspective of the situation.

There are different approaches to combining modalities. One
ways is the early fusion approach, combining modalities that are
similar into a single vector to fit later a unified model for both
modalities [34]. Another approach is the late fusion approach, in
which both modalities are processed by different and independent
models for each one. A straightforward approach to combining
modalities is to have two different models that classify data and
make a weighted sum of both to obtain the final classification.
Another direct way is to obtain feature vectors for each modality
from their respective models, concatenating them into a single
one, and finally making another model that performs the final task
using this single vector.

There are relevant implementations of these types of multi-
modal models, such as MMF [33], CLIP [25], and VATT [2]. MMF
is a modular framework developed by FacebookAI used for vision
and language multimodal research. This framework contains im-
plementations of state-of-the-art vision and language models such
as VisualBERT [16] and VilBERT Lu, Batra, Parikh and Lee [17], as
well as different datasets to work on like VQA [4]. CLIP is another
multimodal model which relates text and images. CLIP is pre-
trained using a set of images and a set of textual content to estab-
lish relationships between them. The VATT model is an approach
whose main aim is to analyse video, audio, and text at the same
time. Each modality has a Transformer encoder to process the in-
put and finally a projection head to get the similarity between all
those modalities using contrastive losses. This approach can be
used later for downstream tasks in a variety of fields, such as video
action recognition and audio event classification.



Table 2
Statistics of the DementiaBank Pitt Corpus Statistics for dementia and healthy
(control) patients.

Dementia Control

Number of patients 194 99
Number of samples 309 243

Fig. 1. The Cookie Theft Picture [15].
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3. DementiaBank Pitt Corpus dataset

This section describes in detail the DementiaBank Pitt Corpus,
which is the dataset chosen to evaluate the multimodal approach
proposed in this work. This dataset contains the audio of the
recording as well as a transcription of the dialogue between the in-
terviewer and the patients. The range of age of the patients goes
from 46 to 90 years, including both male and female patients.
The statistics about the number of healthy (control group) and de-
mentia patients, including the number of samples (i.e., audio
recordings, since a patient can have multiple recordings) is shown
in Table 2.

In order to gather this dataset, subjects were asked to describe
an image. Specifically, the image used was the cookie theft picture
shown in Fig. 1. This image has been used in clinical and experi-
mental research, specifically in the field of mental and cognitive
impairments.

This experiment was designed to detect some of the signs of de-
mentia, such as having difficulties choosing the right words, choos-
ing the wrong ones, using related or substitute words, or even not
finding a word at all. Other signs shown include using words with
no meaning or not related to the conversation [3].

Among recent studies working over this dataset, it is worth
mentioning the work by Warnita, Inoue and Shinoda [36]. In this
work, the authors used only audio data in the corpus, and the mod-
el used was a Gated CNN, achieving 73.6% accuracy. Another work
that uses only audio data from the corpus is the one presented by
Chakraborty, Pandharipande, Bhat and Kopparapu [6]. The authors
proposed a model that analyses the audio clips in order to obtain
audio biomarkers for the detection of dementia.

There are also works working only on textual modality, as in the
case of [14]. In this work, the best results obtained were achieved
by using CNNs combined with Recurrent Neural Networks (RNN)
and the POS-tagging (morphological information) transcriptions
of the utterances. The best results to date were obtained in this
work, achieving an accuracy of 91.1%. The data used was down-
sampled because not every utterance had an accompanying POS-
tagged transcription.

There are also different approaches where both modalities were
combined. Such is the case of the work by Mittal, Sahoo, Datar,
Kadiwala, Shalu and Mathew [23]. In this study, the authors used
both modalities and two different models to weight the probability
of dementia. For audio processing, a Mel Spectrogram [32] com-
bined with an audio based model were used. For the textual part,
different combinations of segment transcriptions and the full tran-
scription were used. By using this model, the authors obtained an
accuracy of 85.3%. For this multimodal project developed by
Roberts [32], the authors implemented two different models to
process audio and text making a prediction of whether the patient
has dementia or not. After both predictions, a ponderated sum of
weights was made in order to achieve a final multimodal
prediction.

Te DementiaBank Pitt Corpus has a smaller subset which has
been balanced in terms of age and gender, called ADReSS challenge
[18]. Different works have also proposed solutions on it [22,8,21].
In the work done by Mahajan and Baths [21], the authors propose
various multimodal models that combine different modalities, us-
ing raw data as text, using the original data, or extracting specific
features. In contrast to the work in [32], this work extracts features
from various modalities and later combines them. After combining
the features through concatenation, a standard classification is per-
formed using dense layers.

This is not the only corpus available from the DementiaBank
dataset, this dataset contains other corpuses with different exper-
iments and even in other languages. Among the available
3

languages, we can find English, German, Mandarin, Spanish, and
Taiwanese. But, Pitt Corpus and its subset, ADReSS, are the ones
with more data and the most used ones in this area. The aforemen-
tioned corpus in other languages are rarely used in academic
research.

4. Approach

The initial dataset was split into two different subsets: the
training set, with a size of 469 samples (representing 85% of the
dataset) and a test set, comprising 83 samples (representing the re-
maining 15%). As commented before, this dataset contains data in
two different modalities: the audio of the recordings and their
transcriptions. To address this situation, different models were de-
veloped for each modality in order to evaluate their individual per-
formance, finally combining them into a multimodal model trying
to improve the results of the single modality approach. The re-
mainder of this section describes the individual modalities and
the combination of them in more detail.

4.1. Audio

This section describes the approach to audio analysis. Fig. 2 pre-
sents the architecture of the model implemented.

In this approach, each audio file is converted to its waveform (a
graphical representation of the signals over time) and then con-
verted to a Mel Spectrogram [32], which is a spectrogram in the
Mel Scale. This scale is inspired by the way humans perceive
sounds, differentiating the low frequency sounds more easily than
the high frequency sounds. In the Mel Scale, two equally distanced
sounds in the pitch sound equally to a listener. A CNN was used to
process the spectrogram obtained. This implementation based on
CNN and Mel Spectrogram of an audio achieved the state-of-the-
art in previous audio classification tasks [27,10]. For this reason,
it was chosen as the architecture for the present work.

The CNN model handles the spectrogram as an image. This is
because these neural network architectures are used basically for



Fig. 2. Architecture of the model for audio analysis.
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image tasks, such as image classification. They apply different con-
volutions/kernels in order to extract features from the image. In
this proposal, different pre-trained CNNs have been tested: Mo-
bileNet [11], DenseNet [12], and ResNet He, Zhang, Ren and Sun
[9]. The final step of this audio model is a dense layer with the out-
puts of the CNN in order to get as a final output the prediction of
the model: dementia or healthy patient.

The best results in these experiments were obtained with the
DenseNet model. In Section 5, the results obtained from the audio
model are those obtained using DenseNet. The results of MobileNet
and ResNet were discarded.
4.2. Text

The textual information in the corpus was encoded in CHAT for-
mat [20], a format used by TalkBank1 in their corpora, including the
DementiaBank Pitt Corpus. This format not only includes the tran-
scription of the patients but also the transcription of the interviewer,
as well as personal information from the patients and special flags
representing pauses or mistaken words. For this reason, the original
transcription files have been pre-processed in order to obtain a clean
text transcription.

Fig. 3 shows the architecture of the model proposed for text
analysis.

As shown in the architecture, the BERT model [7] is used for text
analysis, a model that has achieved state-of-the-art results in many
natural language processing (NLP) tasks. This model is based on the
Transformers architecture [35], stacking different encoders that
extract features from the text. The most interesting aspect of this
architecture is the use of attention layers in order to establish rela-
tions between different words in the sentence.

In order to use the BERT model for this task, it was previously
fine-tuned. After a text tokenization process, the model receives
encoded words as input and returns word embeddings, which
are different for each word and have a size of 768 dimensions
per embedding. These embeddings are a way of representing a
word as dense numerical vectors, enabling it to establish similar
representations for words with similar meanings.

One way of fine-tuning BERT is to use the embeddings associat-
ed with the [CLS] token in a final dense layer for classification.
This [CLS] embedding represents the whole text. However, in
the experiments, this was not the only method tested for text rep-
resentation. Another model used these embeddings to fit a bidirec-
tional Long Short-Term Memory (LSTM) network. LSTMs have
proven to produce good results for tasks using sequences of text,
1 https://www.talkbank.org/.
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and prior to the introduction of Transformers, they were the
state-of-the-art in many NLP tasks. LSTMs use the output of the
words or embeddings of a layer as the input of the following one,
retaining information from previous steps. They also have a mech-
anism to forget irrelevant data from previous segments and retain
important ones. Finally, the output of the LSTM is used as input for
a final dense layer to obtain the model’s output. Section 5 shows
the comparison of the results obtained by BERT and LSTM.
4.3. Multimodal

After evaluating features separately, the text and audio were
combined into a multimodal model to test if better results could
be obtained. As previously mentioned, the main idea of this multi-
modal approach is to complement both modalities. For instance,
adding hesitation from audio to semantic information from text
provides valuable information that cannot be obtained by analyz-
ing only one modality.

To combine both modalities, the previously defined unimodal
models where used removing the final classification layers. These
classification layers are simple dense layers that receive feature
vectors to classify them into dementia or healthy categories. The
feature vectors are the result of processing the raw data, which,
in our case, is the text transcription and audio files. These models
provide two feature vectors that are then combined into a single
vector, adding classification layers to obtain a final multimodal
prediction. This way, the prediction takes into account information
regarding both modalities.

This type of combination is called late-stage fusion since the
data is processed, feature vectors are obtained, and then they are
combined. If the data were more similar, other methods could have
been chosen, such as early-stage fusion, which involves combining
the data before processing it.

Fig. 4 shows the architecture of the model proposed for the
multimodal analysis.
4.4. Other approaches

As mentioned before, the best results on this dataset were ob-
tained in [14] by combining text features with the POS-tagging of
the text. For this reason, this information was also included in
the proposed model to test if it improved the results. After obtain-
ing the POS-tagging of the text by using spaCy2, the features were
introduced in a word embedding and a bidirectional LSTM. This im-
plementation has been done by using the embedding and LSTM lay-
2 https://spacy.io/.



Fig. 3. Architecture of the model for text analysis.

Fig. 4. Architecture of the model for multimodal analysis.

Fig. 5. Mean occurrence of special flags in dementia and control patients.

D. Ortiz-Perez, P. Ruiz-Ponce, D. Tomás et al. Neurocomputing 548 (2023) 126413
ers available in the PyTorch library [28].The embeddings with POS-
tagged features are generated and then fed into the LSTM layer. After
the LSTM, a dense layer for a final classification was used.

As mentioned above, the CHAT format of the transcriptions has
a lot of information and not only the plain text. There are special
flags that represent, for example, a pause in the patient response
or a mistaken word. As some symptoms of dementia include hav-
ing difficulty finding certain words, this can lead to pauses in
speech or using incorrect words. These special flags may provide
valuable information for this task. The occurrence of these special
tokens was counted and compared between control and dementia
patients. Fig. 5 displays how these flags are present in the different
transcriptions of both healthy individuals and those with
dementia.

Among other flags, the ones that have shown differences be-
tween control and dementia patients are: repetitions, retracing,
pauses, and unintelligible. Other flags such as doubts have not
shown a big difference between both types.
5. Evaluation

The accuracy measure on the test set was used to evaluate the
results of the models. Accuracy represents the percentage of cor-
rect predictions among all the predictions made. The obtained re-
sults for each model, excluding those mentioned in Section 4.4 (the
POS-tagging and the special flags models), can be seen in Table 3.
5

These models were discarded as they did not provide satisfactory
results in our experiments. Both models failed to learn from the
training set, resulting in random predictions by the model, with
an accuracy of around 55%. Although there is a notable difference
in the mean repetitions, retracing, pauses, and unintelligible flags be-
tween dementia and control patients (see Fig. 5), these features did
not provide accurate predictions. The POS-tagging model also ob-
tained similar results and was therefore discarded prior to the
combination experiments.



Table 3
Comparison of the models evaluated.

Model Description Accuracy

Audio Mel Spectrogram + CNN (DenseNet) 73.49%
Text 1 BERT embeddings + dense layer 84.33%
Text 2 BERT embeddings + bidirectional LSTM + dense

layer
90.36%

Multimodal
1

Audio + Text 1 84.33%

Multimodal
2

Audio + Text 2 86.65%

Fig. 6. Confusion matrix of the best text model over the test set.

Table 4
Central tendency measures for the length (number of words) of the conversations of
dementia and control patients.

Measure Dementia Control

Mean 450.94 503.90
Standard deviation 242.15 280.28
Min 92 109
Max 1654 2421
Median 404 432
25th percentile 279 326
75th percentile 556 613
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The best results were obtained by the text model which used
BERT embeddings along with a bidirectional LSTM (model Text
2). The use of this bidirectional LSTM improved the results ob-
tained by using only the embedding of the [CLS] token for this
task. It is worth noting that the textual data provided significantly
better results than the audio content. The multimodal models pro-
posed (Multimodal 1 and Multimodal 2) did not improve the results
obtained using only textual data.

Finally, Fig. 6 provides a more detailed view of how the best
model (Text 2) performed on dementia and healthy cases
separately.

Using this information, other metrics such as precision, recall,
and F1-score can be calculated, which are relevant in measuring
the quality of the model’s predictions for dementia cases. For the
Text 2 model, all three metrics achieved the same result of
91.11%, which is a slight improvement over the accuracy obtained.
This improvement is due to the fact that these metrics only consid-
er the correct predictions of dementia cases, and the model had a
higher percentage of correctly predicting dementia cases due to
the larger number of dementia samples in the corpus.
6. Corpus analysis

Taking into account the good performance achieved by the tex-
tual model (BERT), this section presents an analysis of the textual
part of the dataset used in the experiments to provide a better un-
derstanding of their nature. The goal is to identify clues that makes
text-only models to have such a good performance in this multi-
modal dataset.

First of all, the length (number of words) of the texts provided
by healthy patients and patients with dementia were analysed.
The result of this analysis is shown in Table 4.

The table shows that, on average, the conversations uttered by
dementia patients are 10% shorter than those uttered by healthy
patients (450.94 words and 503.90 words, respectively). There is
also more homogeneity in terms of the number of words used in
patients with dementia, as they show a lower standard deviation.
Looking at the median, which is less sensitive to the presence of
outliers, it also indicates the presence of shorter texts in the case
of patients with dementia (404 words compared to 432 words of
healthy patients). Fig. 7 and Fig. 8 show the distribution of the
length of the conversations in both dementia and control patients
in more detail.
Fig. 7. Histogram of the length (number of words) of conversations by dementia
patients.
6.1. N-gram frequency count

Before performing additional analysis it was necessary to carry
out a series of preprocessing tasks to clean the data. To this end,
the NLTK3 library was used to lowercase all the texts, remove punc-
tuation marks, and remove stopwords, that is, commonly used words
3 https://www.nltk.org/
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in English language that do not provide useful information (e.g.
‘‘the”, ‘‘a”, ‘‘and”).

The first task consisted of extracting n-grams of words from
both dementia and healthy datasets. Specifically, unigrams and bi-
grams were identified for further analysis. Then, a straightforward
count of the frequencies of n-grams in conversations was carried



Fig. 8. Histogram of the length (number of words) of conversations by control
(healthy) patients.

Table 5
List of 50 most frequent n-grams for dementia and control (healthy) patients.

Dementia

Unigrams uh, cookie, dishes, jar, he’s, water, little, sink, stool,
boy, cookies, girl, floor, well, there’s, drying, mother,
laughs, running, falling, washing, +, gonna, fall, get, see,
getting, window, water’s, one, like, going, reaching,
hand, standing, um, looks, boy’s, sister, got, trying,
out_of, something, that’s, oh, two, mother’s, looking,
overflowing, dish

Bigrams cookie jar, drying dishes, washing dishes, little girl,
little boy, looks like, gonna fall, he’s gonna, uh uh,
reaching cookie, trying get, getting cookies, dishes uh,
jar he’s, water running, water’s running, cookies
out_of, onto floor, stool he’s, getting cookie, little
boy’s, get cookies, running sink, uh +, two cups, running
floor, dishes sink, looking window, mother washing, jar
uh, uh stool, sink running, get cookie, cookies cookie,
sink uh, sink overflowing, he’s falling, uh sink, stool
falling, out_of cookie, boy getting, water run, dishes
water, uh mother, jar little, boy uh, water floor, falling
stool, taking cookies, uh there’s

Control

Unigrams uh, cookie, sink, dishes, stool, water, jar, boy, little,
mother, he’s, girl, drying, window, um, cookies, running,
reaching, hand, open, there’s, floor, standing, falling,
out_of, overflowing, one, getting, like, looks, water’s,
see, washing, mother’s, fall, curtains, outside, two,
well, sister, going, dish, plate, kitchen, looking, cups,
onto, get, cupboard, counter

Bigrams cookie jar, drying dishes, little girl, reaching cookie,
washing dishes, looks like, little boy, water running,
sink overflowing, out_of cookie, onto floor, mother
drying, two cups, cookies out_of, girl reaching, dishes
water, window open, dishes sink, falling stool, water’s
running, getting cookie, getting cookies, looking
window, standing water, drying dish, sink running, jar
he’s, mother washing, out_of sink, taking cookies,
window’s open, running sink, fall stool, stool falling,
standing stool, get cookie, stool he’s, door open,
mother’s drying, stool tipping, dishes water’s, left
hand, uh mother, overflowing sink, cookies cookie, water
overflowing, hand cookie, uh uh, stealing cookies, stool
uh
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out. Table 5 shows the 50 most frequent unigrams and bigrams for
dementia and healthy individuals.

Taking a closer look at these lists, many words are common be-
tween the two different classes, but there are differences in some
terms. As analyzed in Section 7, one token that can be observed
in both classes but is much more common in the dementia class
is the word well. Another remarkable token to distinguish be-
tween the classes is the word something, which is present in
the list of unigrams of dementia patients but not in the control
group. This may arise from the difficulty some dementia patients
experience in properly recognizing items in the image, causing
them to use a generic word instead.

The list of bigrams also reveals interesting patterns. For in-
stance, patients with dementia tend to use the verbs reaching

and getting with the noun cookies with almost equal frequen-
cy. In contrast, healthy patients tend to use the verb reaching

more frequently when describing that part of the image. Another
notable example is the word gonna, which only appears in the bi-
grams list of dementia patients, used in combination with the
words he’s and fall to describe the little boy standing up on
the stool.
6.2. Polarized Weirdness Index

In addition to the n-gram frequency count, an analysis was car-
ried out by computing the Polarized Weirdness Index (PWI) [31] of
the unigrams and bigrams in both dementia and healthy texts in
order to extract the most characteristic words of each one. The
PWI is a variant of the Weirdness Index (WI) [1], which is a metric
to retrieve words characteristics of a special language with respect
to their common use in general language. The intuition behind WI
is that a word is highly weird in a specific corpus if it occurs signif-
icantly more often in that context than in a general language cor-
pus. Given a specialist and a general corpus, the metric can be
described as the ratio of its relative frequencies in the respective
corpora. In the case of PWI, the metric compares the relative fre-
quencies of a word as it occurs in the subset of a labeled corpus
by one value of the label against its complement. In the present
work, the PWI is used to compare the prevalence of words in de-
mentia and healthy utterances.

”Table 6 displays the top 20 unigrams and bigrams extracted
from the samples of dementia and healthy participants based on
the PWI metric. As mentioned in the previous subsection, the bi-
grams of dementia patients contain the word something, while
it is absent in the healthy patients’ list.
6.3. Feature selection

In addition to frequency count, a feature selection procedure us-
ing v2 [29] was applied to identify what unigrams were considered
as most relevant in order to differentiate between dementia and
healthy texts. Before applying v2 it is necessary to transform every
post into a numerical vector. The TF-IDF weighting schema was
used to obtain a number representing the frequency of the token
in the post (TF) and its prevalence in the dataset (IDF). The number
of dimensions of each post vector is equal to the length of the vo-
cabulary of the corpus, i.e., each dimension corresponds to one to-
ken. The value of the dimension is the TF-IDF weight if the token
exists in the post or 0 otherwise. Texts were preprocessed in ad-
vance as in the previous analysis.

Table 7 shows the 50 best unigrams in order to differentiate de-
mentia from healthy texts according to v2. This list shows some to-
kens that were appreciated with the previously obtained n-grams
and also additional ones that are not as commonly used in the cor-
pus but result in a good key to differentiate dementia.



Table 6
List of 20 most relevant unigrams based on PWI for the dementia and control
(healthy) samples in the dataset.

Dementia Control

Unigrams Bigrams Unigram Bigrams

spilled water run nose mother know

whatever let water daydreaming open there’s

g got cookie who’s blowing curtains

fell boy’s cookie sort um boy

way girl wants process wind blowing

j um stool growing getting feet

different uh well believe grass growing

come sink well shirt kitchen cabinets

begging laughs he’s blowing children getting

thing lady washing wind out_of faucet

yeah going uh action open curtains

wa floor laughs wearing another one

wash he’s cookie beside cookie girl

picture run sink overflow plate two

hurt get hurt high mother standing

yet jar mother’s somewhere kitchen mother

head uh something brother’s okay boy

mop there’s something raising water looking

legs dishes let sort_of sink boy

spigot’s dishes laughs presume standing sink
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7. Model explainability

Following the premise of the previous section, with the aim of
identifying why textual models work so well in the multimodal
corpus, the Transformer Interpreter software [30] was used to ob-
tain more information about how BERT makes its predictions.

This tool provides more insights and information about how
Transformer models make their decisions based on a given input.
A specific weight is obtained for each token, which represents
how that token influences the final decision of the model in the
classification tasks. Since this model works on textual modality,
each token is a word. As this classification task has only two possi-
ble outcomes (dementia or healthy), whenever a token influences
positively the decision for one, it will influence negatively the de-
cision for the other.

After analysing the tokens influence on the test set, the most
significant tokens identified were those used when the patient
starts to describe the image. The token Well at the beginning of
a sentence influences positively when the model predicts dementi-
a. This in turn means that the use of that token influences negative-
ly when the model predicts a healthy patient. In Fig. 9 and Fig. 10,
there are two examples of how the word Well influences both de-
cisions made by the model. In that representation, the words high-
lighted in red will influence negatively the decision and those
highlighted in green will influence it positively. The more intense
the color, the more important the word has in the final decision.

Similarly, the use of other tokens at the beginning of a sentence
positively influences the prediction of dementia, as shown in the
case of Okay, which can be observed in Fig. 11 and Fig. 12. These
tokens are used to introduce the sentence before describing the
image, and the model gives great importance to them for the final
decision of predicting dementia or not. This behavior can be ob-
served in several other words used at the beginning of a sentence,
such as So.
Table 7
List of 50 most relevant unigrams according to v2.

here, is, blowing, open, this, overflowing, laughs, down, window, reaching, w
stepping, gonna, run, mother, the, um, curtains, nose, be, something, her,
hand, yeah, standing, fell, good, whatever, wa, oh
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This is related to some symptoms of dementia, such as having
difficulties finding the right words to use or expressing themselves
properly. These difficulties can lead to the use of auxiliary words
like those explained before, with the intention of gaining more
time while finding the right words to use. Other tokens used sim-
ilarly that the model takes into account are expressions used to
generate pauses, such as um, oh and uh, among others.

Another behavior observed by this model is the influence of ex-
pressing uncertainty. One example of this is by using the verb
Guess or the adverb Apparently, both of which have a positive
influence on predicting dementia.

The trend of hesitation and uncertainty in speech can be reflect-
ed by analyzing the length of the audio samples in the datasets.
Recordings of people suffering from dementia usually are longer
than healthy ones, having around 20% more duration in the files.
This can be visually appreciated in Fig. 13, where a histogram of
the lengths is displayed comparing both control and dementia
classes. In the figure, even though there are fewer samples of
healthy patients, there are more samples in the leftmost part, rep-
resenting less time of audio. And in contrast, in the rightmost part,
the dementia classes predominate over the other.

One remarkable point is that the same word used in different
contexts can have different influences. This is an important factor
because not only are the words important, but also the way they
are used in each situation. Additionally, the influence of a token
can also vary from one sample to another, resulting in different
scores between patients. Another remarkable point is that
although there may be cases where a word has a very negative in-
fluence, the model can still predict the other class. This is exempli-
fied by the use of Well for a healthy patient prediction.

8. Conclusions and future work

In this work, different models and approaches have been tested
on the task of multimodal dementia detection. The detection of de-
mentia, especially in the early stages, can help patients in order to
improve their quality of life through different treatments.

In order to obtain the architecture of the different proposed
models, a research on the state-of-the-art approaches to multi-
modal classification was carried out. Among the different ap-
proaches, the following one was implemented and tested: the
use of CNNs for audio classification and the use of Transformers
(BERT model) for text classification, including the combination of
both. The model that best worked in this task was based on BERT,
using only textual information. In order to explain this result, an
analysis of the textual part of the dataset was carried out, including
an explainability approach to determine the influence of specific
words in determining the nature of the patient (dementia or
healthy).

For future work, the trained model will be applied to other
mental diseases that have similarities with dementia, such as
aphasia disease. Another interesting future work is the addition
of video modality, as well as the analysis of emotions shown in
the different modalities. The aim of this is to try to identify rela-
tions between the expressed emotions in detecting symptoms of
dementia. For this purpose, and with the addition of a video modal-
ity, an in-depth analysis of the facial expressions of the patients is
planned, with the aim of identifying patterns and obtaining useful
information, such as emotions. Facial expressions are not the only
ind, out_of, quiet, finger, action, while, moving, mouth, who, spilled,
faucet, thing, breeze, about, they, growing, are, counter, well, get, hm,



Fig. 9. Influence of the word Well in the prediction of a healthy patient.

Fig. 10. Influence of the word Well in the prediction of a dementia patient.

Fig. 11. Influence of the word Okay in the prediction of a healthy patient.

Fig. 12. Influence of the word Okay in the prediction of a dementia patient.

Fig. 13. Comparison of lengths of healthy and dementia patients records.
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feature to be analyzed, as the evolution of the patient’s pose and
movements during a task or conversation can also provide insights.
Cognitive diseases such as dementia can negatively affect these
movements. With all this information, the work can be extended
for a more complex treatment of the data.
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