635 research outputs found

    Pollutant Formation During the Thermal Decomposition of Electrical and Electronic Wastes

    Get PDF
    Paper submitted to the 7th International Symposium on Feedstock Recycling of Polymeric Materials (7th ISFR 2013), New Delhi, India, 23-26 October 2013.In this contribution we present the results of the research done at the University of Alicante in the last four years [1-7] about the thermal decomposition of waste electrical and electronic equipment (WEEE). Several materials have been studied, including PVC and halogen-free wires, printed circuit boards and casing from mobile phones, as well as brominated flame reatardants used in the EEE preparation such as TBBPA (tetra-bromo-bisphenol-A). Several experiments were performed in a nitrogen atmosphere (pyrolysis runs) and also in an oxidative atmosphere with different oxygen concentrations. Thermogravimetric runs were used to characterize samples, and a horizontal laboratory reactor was used to study the formation and destruction of pollutants during the thermal decomposition of these samples. More than 150 compounds, including carbon oxides, light hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), chlorophenols (ClPhs), chlorobenzenes (ClBzs) and bromophenols (BrPhs) have been identified and quantified. Furthermore, polychlorodibenzo-p-dioxin and polychlorodibenzofurans (PCDD/Fs), polybromodibenzo-p-dioxin and polybromodibenzofurans (PBDD/Fs), and dioxin-like PCBs produced were analyzed.Generalitat Valenciana: PROMETEO/2009/043/FEDER. Ministerio de Educación y Ciencia: CTQ2008-05520

    Decomposition of two types of electric wires considering the effect of the metal in the production of pollutants

    Get PDF
    Combustion runs at 700 °C in a horizontal laboratory furnace were carried out on two different electric wires (PVC and halogen-free wire). Tests were performed in the presence and in the absence of the metal conductor of the wires. The analyses of the polycyclic aromatic hydrocarbons (PAHs), chlorobenzenes (CBzs), chlorophenols (CPhs), mono- to octa-chlorodibenzo-p-dioxin and dibenzofurans (PCDD/Fs), and dioxin-like PCBs are shown. Regarding semivolatile compounds, PAHs production decreases in the presence of metal, while a higher amount of chlorinated compounds are emitted. Respect to the PCDD/Fs, the PVC wire in the presence of metal presents the highest emission, with a much more emission of furans than dioxins. The maximum emission is with 2 or 3 chlorine atom PCDD/Fs. PCBs emission correlates with PCDD/F production and represents 3–4% of total toxicity, determined by using WHO2005 factors.Support for this work was provided by the Generalitat Valenciana (Spain) with Projects PROMETEO/2009/043/FEDER, and by the Spanish MCT CTQ2008-05520

    Thermogravimetric study of the decomposition of printed circuit boards from mobile phones

    Get PDF
    Thermal decomposition of printed circuits boards (PCB) is studied, using thermogravimetric analysis to compare the thermal behavior of PCB of mobile phones before and after the removal of the metallic fraction by acid washing. Several dynamic and dynamic + isothermal runs have been carried out at different heating rates (5, 10 and 20 K min−1), from room temperature to more than 1100 K. Also runs in the presence and in the absence of oxygen were performed (combustion and pyrolysis runs). Moreover, TG–MS experiments were performed (both in inert and oxidizing atmosphere) in order to better understand the thermal decomposition of these wastes and identify some compounds emitted during the controlled heating of these materials. Different reaction models are proposed, one for pyrolysis and one for combustion of the two kinds of wastes studied, which proved to simulate appropriately the experimental results at all the heating rates simultaneously.Support for this work was provided by the Generalitat Valenciana (Spain), research project Prometeo/2009/043/FEDER, and by the Spanish MCT, research project CTQ2008-05520

    Thermal Decomposition of Mobile Phones

    Get PDF
    Paper submitted to the 31st International Symposium on Halogenated Persistent Organic Compounds (Dioxin 2011), Brussels, Belgium, 21-25 August 2011.Mobile phones are used for a variety of purposes, including keeping in touch with family members, conducting business, and having access to a telephone in the event of an emergency. Some people carry more than one cell phone for different purposes. In 2006 more than one billion mobile phones were shipped worldwide, 22.5 % more than the quantity shipped in 2005. By 2008 the number of mobile phone users around the world was predicted to reach two billion.Support for this work was provided by the Generalitat Valenciana (Spain) with projects Prometeo/2009/043/FEDER and ACOMP2011/224, and by the Spanish MCT CTQ2008-05520

    Late Bronze Age Hoard studied by PIXE

    Get PDF
    The hoards of metallic objects belonging to the Late European Bronze Age can be interpreted differently depending on the type, number and composition of the artefacts. PIXE analysis has been performed in nine items from the Hoard of Freixanda in Portugal comprising 4 socket axes, a palstave axe, a ring, a chisel, a dagger, and a casting debris. Besides the composition of the main matrix elements, that is Cu and Sn, the amount of trace elements of interest like, As, Pb, Ni and Ag has been determined using this ion beam technique. The high tin content alloy and the high purity of the metals from the Freixanda hoard are characteristic of the Portuguese and Spanish Late Bronze Age metallurgy, supporting the idea of a regional production

    Self-consistent treatment of thermal effects in neutron-star post-mergers: observational implications for third-generation gravitational-wave detectors

    Full text link
    We assess the impact of accurate, self-consistent modelling of thermal effects in neutron-star merger remnants in the context of third-generation gravitational-wave detectors. This is done through the usage, in Bayesian model selection experiments, of numerical-relativity simulations of binary neutron star (BNS) mergers modelled through: a) nuclear, finite-temperature (or ``tabulated'') equations of state (EoSs), and b) their simplifed piecewise (or ``hybrid'') representation. These cover four different EoSs, namely SLy4, DD2, HShen and LS220. Our analyses make direct use of the Newman-Penrose scalar ψ4\psi_4 outputted by numerical simulations. Considering a detector network formed by three Cosmic Explorers, we show that differences in the gravitational-wave emission predicted by the two models are detectable with a natural logarithmic Bayes Factor logB5\log{\cal{B}}\geq 5 at average distances of dL50d_L \simeq 50Mpc, reaching dL100d_L \simeq 100Mpc for source inclinations ι0.8\iota \leq 0.8, regardless of the EoS. This impact is most pronounced for the HShen EoS. For low inclinations, only the DD2 EoS prevents the detectability of such modelling differences at dL150d_L \simeq 150Mpc. Our results suggest that the usage a self-consistent treatment of thermal effects is crucial for third-generation gravitational wave detectors.Comment: 9 pages, 3 Figure

    Using Microbial Community Interactions within Plant Microbiomes to Advance an Evergreen Agricultural Revolution

    Get PDF
    Innovative plant breeding and technology transfer fostered the Green Revolution (GR), which transformed agriculture worldwide by increasing grain yields in developing countries. The GR temporarily alleviated world hunger, but also reduced biodiversity, nutrient cycling, and carbon (C) sequestration that agricultural lands can provide. Meanwhile, economic disparity and food insecurity within and among countries continues. Subsequent agricultural advances, focused on objectives such as increasing crop yields or reducing the risk of a specific pest, have failed to meet food demands at the local scale or to restore lost ecosystem services. An increasing human population, climate change, growing per capita food and energy demands, and reduced ecosystem potential to provide agriculturally relevant services have created an unrelenting need for improved crop production practices. Meeting this need in a sustainable fashion will require interdisciplinary approaches that integrate plant and microbial ecology with efforts to advance crop production while mitigating effects of a changing climate. Metagenomic advances are revealing microbial dynamics that can simultaneously improve crop production and soil restoration while enhancing crop resistance to environmental change. Restoring microbial diversity to contemporary agroecosystems could establish ecosystem services while reducing production costs for agricultural producers. Our framework for examining plant-microbial interactions at multiple scales, modeling outcomes to broadly explore potential impacts, and interacting with extension and training networks to transfer microbial based agricultural technologies across socioeconomic scales, offers an integrated strategy for advancing agroecosystem sustainability while minimizing potential for the kind of negative ecological and socioeconomic feedbacks that have resulted from many widely adopted agricultural technologies

    Triggered crustal earthquake swarm across subduction segment boundary after the 2016 Pedernales, Ecuador megathrust earthquake

    Get PDF
    Megathrust ruptures and the ensuing postseismic deformation cause stress changes that may induce seismicity on upper plate crustal faults far from the coseismic rupture area. In this study, we analyze seismic swarms that occurred in the north Ecuador area of Esmeraldas, beginning two months after the 2016 Mw_{w} 7.8 Pedernales, Ecuador megathrust earthquake. The Esmeraldas region is 70 km from the Pedernales rupture area in a separate segment of the subduction zone. We characterize the Esmeraldas sequence, relocating the events using manual arrival time picks and a local a-priori 3D velocity model. The earthquake locations from the Esmeraldas sequence outline an upper plate fault or shear zone. The sequence contains one major swarm and several smaller swarms. Moment tensor solutions of several events include normal and strike-slip motion and non-double-couple components. During the main swarm, earthquake hypocenters increase in distance from the first event over time, at a rate of a few hundred meters per day, consistent with fluid diffusion. Events with similar waveforms occur within the sequence, and a transient is seen in time series of nearby GPS stations concurrent with the seismicity. The events with similar waveforms and the transient in GPS time series suggest that slow aseismic slip took place along a crustal normal fault during the sequence. Coulomb stress calculations show a positive Coulomb stress change in the Esmeraldas region, consistent with seismicity being triggered by the Pedernales mainshock and large aftershocks. The characteristics of the seismicity indicate that postseismic deformation involving fluid flow and slow slip activated upper plate faults in the Esmeraldas area. These findings suggest the need for further investigation into the seismic hazard potential of shallow upper plate faults and the potential for megathrust earthquakes to trigger slow-slip and shallow seismicity across separate segments of subduction zones

    Client applications and Server Side docker for management of RNASeq and/or VariantSeq workflows and pipelines of the GPRO Suite

    Get PDF
    The GPRO suite is an in-progress bioinformatic project for -omic data analyses. As part of the continued growth of this project, we introduce a client side & server side solution for comparative transcriptomics and analysis of variants. The client side consists of two Java applications called "RNASeq" and "VariantSeq" to manage workflows for RNA-seq and Variant-seq analysis, respectively, based on the most common command line interface tools for each topic. Both applications are coupled with a Linux server infrastructure (named GPRO Server Side) that hosts all dependencies of each application (scripts, databases, and command line interface tools). Implementation of the server side requires a Linux operating system, PHP, SQL, Python, bash scripting, and third-party software. The GPRO Server Side can be deployed via a Docker container that can be installed in the user's PC using any operating system or on remote servers as a cloud solution. The two applications are available as desktop and cloud applications and provide two execution modes: a Step-by-Step mode enables each step of a workflow to be executed independently and a Pipeline mode allows all steps to be run sequentially. The two applications also feature an experimental support system called GENIE that consists of a virtual chatbot/assistant and a pipeline jobs panel coupled with an expert system. The chatbot can troubleshoot issues with the usage of each tool, the pipeline job panel provides information about the status of each task executed in the GPRO Server Side, and the expert provides the user with a potential recommendation to identify or fix failed analyses. The two applications and the GPRO Server Side combine the user-friendliness and security of client software with the efficiency of front-end & back-end solutions to manage command line interface software for RNA-seq and variant-seq analysis via interface environments

    Galaxy formation in the Planck cosmology - I. Matching the observed evolution of star formation rates, colours and stellar masses

    Get PDF
    We have updated the Munich galaxy formation model to the Planck first-year cosmology, while modifying the treatment of baryonic processes to reproduce recent data on the abundance and passive fractions of galaxies from z = 3 down to z = 0. Matching these more extensive and more precise observational results requires us to delay the reincorporation of wind ejecta, to lower the surface density threshold for turning cold gas into stars, to eliminate ram-pressure stripping in haloes less massive than ∼1014 M⊙, and to modify our model for radio mode feedback. These changes cure the most obvious failings of our previous models, namely the overly early formation of low-mass galaxies and the overly large fraction of them that are passive at late times. The new model is calibrated to reproduce the observed evolution both of the stellar mass function and of the distribution of star formation rate at each stellar mass. Massive galaxies (log M⋆/M⊙ ≥ 11.0) assemble most of their mass before z = 1 and are predominantly old and passive at z = 0, while lower mass galaxies assemble later and, for log M⋆/M⊙ ≤ 9.5, are still predominantly blue and star forming at z = 0. This phenomenological but physically based model allows the observations to be interpreted in terms of the efficiency of the various processes that control the formation and evolution of galaxies as a function of their stellar mass, gas content, environment and time
    corecore