3,579 research outputs found

    Ameliorative effects of salt resistance on physiological parameters in the halophyte Salicornia bigelovii torr. with plant growth-promoting rhizobacteria

    Get PDF
    Salicornia bigelovii is a promising resource to cultivate under extreme climatic conditions of arid-desert regions. However, the production of Salicornia depends on the appropriate supplementation of nitrogen rich synthetic fertilizers. Application of specific halotolerant nitrogen-fixing bacteria associated with S. bigelovii could be an important practice for crop production in salt-affected regions. Seedlings of S. bigelovii were inoculated and developed with plant growth promoting rhizobacteria (Klebsiella pnseumoniae) at different salinities (0 and 0.25 M NaCl) grown under in vitro conditions. The inoculation increased growth and physiological activity at a high salinity. The major benefits of inoculation were observed on total seedlings biomass (320 and 175 g at 0 and 0.25 M NaCl, respectively) and adjacent branches of stem biomass (150 and 85 g at 0 and 0.25 M NaCl, respectively). The inoculation with Klebsiella pneumoniae also significantly improved seedlings salinity tolerance compared to the noninoculated controls. In non-salinity conditions, the inoculated seedlings enhanced the CO2 fixation and O2 evolution. The non-inoculated controls were more sensitive to salinity than inoculated seedlings exposed to salinity, as indicated by several measured parameters. Moreover, inoculated seedlings had significantly increase on proline, phenolics content, but not significant in starch compared to noninoculated controls. In conclusion, K. pneumoniae inoculation mitigates the salinity effects and promotes the Salicornia growth.Keywords: Salicornia bigelovii, Klebsiella pneumoniae, halophyte, ecotype, stress salinity. African Journal of Biotechnology Vol. 12(34), pp. 5278-528

    Effects of food-borne nanomaterials on gastrointestinal tissues and microbiota

    Get PDF
    Ingestion of engineered nanomaterials is inevitable due to their addition to food and prevalence in food packaging and domestic products such as toothpaste and sun cream. In the absence of robust dosimetry and particokinetic data, it is currently challenging to accurately assess the potential toxicity of food-borne nanomaterials. Herein, we review current understanding of gastrointestinal uptake mechanisms, consider some data on the potential for toxicity of the most commonly encountered classes of food-borne nanomaterials (including TiO2 , SiO2 , ZnO, and Ag nanoparticles), and discuss the potential impact of the luminal environment on nanoparticle properties and toxicity. Much of our current understanding of gastrointestinal nanotoxicology is derived from increasingly sophisticated epithelial models that augment in vivo studies. In addition to considering the direct effects of food-borne nanomaterials on gastrointestinal tissues, including the potential role of chronic nanoparticle exposure in development of inflammatory diseases, we also discuss the potential for food-borne nanomaterials to disturb the normal balance of microbiota within the gastrointestinal tract. The latter possibility warrants close attention given the increasing awareness of the critical role of microbiota in human health and the known impact of some food-borne nanomaterials on bacterial viability. For further resources related to this article, please visit the WIREs website.</p

    Overcoming challenges in variant calling : exploring sequence diversity in candidate genes for plant development in perennial ryegrass (Lolium perenne)

    Get PDF
    Revealing DNA sequence variation within the Lolium perenne genepool is important for genetic analysis and development of breeding applications. We reviewed current literature on plant development to select candidate genes in pathways that control agronomic traits, and identified 503 orthologues in L. perenne. Using targeted resequencing, we constructed a comprehensive catalogue of genomic variation for a L. perenne germplasm collection of 736 genotypes derived from current cultivars, breeding material and wild accessions. To overcome challenges of variant calling in heterogeneous outbreeding species, we used two complementary strategies to explore sequence diversity. First, four variant calling pipelines were integrated with the VariantMetaCaller to reach maximal sensitivity. Additional multiplex amplicon sequencing was used to empirically estimate an appropriate precision threshold. Second, a de novo assembly strategy was used to reconstruct divergent alleles for each gene. The advantage of this approach was illustrated by discovery of 28 novel alleles of LpSDUF247, a polymorphic gene co-segregating with the S-locus of the grass self-incompatibility system. Our approach is applicable to other genetically diverse outbreeding species. The resulting collection of functionally annotated variants can be mined for variants causing phenotypic variation, either through genetic association studies, or by selecting carriers of rare defective alleles for physiological analyses

    When What's Left Is Right: Visuomotor Transformations in an Aged Population

    Get PDF
    Background: There has been little consensus as to whether age-related visuomotor adaptation effects are readily observable. Some studies have found slower adaptation, and/or reduced overall levels. In contrast, other methodologically similar studies have found no such evidence of aging effects on visuomotor adaptation. A crucial early step in successful adaptation is the ability to perform the necessary transformation to complete the task at hand. The present study describes the use of a viewing window paradigm to examine the effects of aging in a visuomotor transformation task. Methods: Two groups of participants, a young adult control group (age range 18–33 years old, mean age = 22) and an older adult group (age range 62–74, mean age = 68) completed a viewing window task that was controlled by the user via a computer touchscreen. Four visuomotor ‘‘flip’ ’ conditions were created by varying the relationship between the participant’s movement, and the resultant on-screen movement of the viewing window: 1) No flip 2) X-Axis and Y-axis body movements resulted in the opposite direction of movement of the viewing window. In each of the 3) Flip-X and 4) Flip-Y conditions, the solitary X- or Y-axes were reversed. Response times and movement of the window were recorded. Conclusions: Older participants demonstrated impairments in performing a required visuomotor transformation, as evidenced by more complex scanning patterns and longer scanning times when compared to younger control participants. These results provide additional evidence that the mechanisms involved in visuomotor transformation are negatively affected by age

    Nitrogen uptake and internal recycling in Zostera marina exposed to oyster farming: eelgrass potential as a natural biofilter

    Get PDF
    Oyster farming in estuaries and coastal lagoons frequently overlaps with the distribution of seagrass meadows, yet there are few studies on how this aquaculture practice affects seagrass physiology. We compared in situ nitrogen uptake and the productivity of Zostera marina shoots growing near off-bottom longlines and at a site not affected by oyster farming in San Quintin Bay, a coastal lagoon in Baja California, Mexico. We used benthic chambers to measure leaf NH4 (+) uptake capacities by pulse labeling with (NH4)-N-15 (+) and plant photosynthesis and respiration. The internal N-15 resorption/recycling was measured in shoots 2 weeks after incubations. The natural isotopic composition of eelgrass tissues and vegetative descriptors were also examined. Plants growing at the oyster farming site showed a higher leaf NH4 (+) uptake rate (33.1 mmol NH4 (+) m(-2) day(-1)) relative to those not exposed to oyster cultures (25.6 mmol NH4 (+) m(-2) day(-1)). We calculated that an eelgrass meadow of 15-16 ha (which represents only about 3-4 % of the subtidal eelgrass meadow cover in the western arm of the lagoon) can potentially incorporate the total amount of NH4 (+) excreted by oysters (similar to 5.2 x 10(6) mmol NH4 (+) day(-1)). This highlights the potential of eelgrass to act as a natural biofilter for the NH4 (+) produced by oyster farming. Shoots exposed to oysters were more efficient in re-utilizing the internal N-15 into the growth of new leaf tissues or to translocate it to belowground tissues. Photosynthetic rates were greater in shoots exposed to oysters, which is consistent with higher NH4 (+) uptake and less negative delta C-13 values. Vegetative production (shoot size, leaf growth) was also higher in these shoots. Aboveground/belowground biomass ratio was lower in eelgrass beds not directly influenced by oyster farms, likely related to the higher investment in belowground biomass to incorporate sedimentary nutrients

    Uniform bounds on complexity and transfer of global properties of Nash functions

    Get PDF
    We show that the complexity of semialgebraic sets and mappings can be used to parametrize Nash sets and mappings by Nash families. From this we deduce uniform bounds on the complexity of Nash functions that lead to first-order descriptions of many properties of Nash functions and a good behaviour under real closed field extension (e.g. primary decomposition). As a distinguished application, we derive the solution of the extension and global equations problems over arbitrary real closed fields, in particular over the field of real algebraic numbers. This last fact and a technique of change of base are used to prove that the Artin-Mazur description holds for abstract Nash functions on the real spectrum of any commutative ring, and solve extension and global equations in that abstract setting. To complete the view, we prove the idempotency of the real spectrum and an abstract version of the separation problem. We also discuss the conditions for the rings of abstract Nash functions to be noetherian

    The Origin of GPCRs: Identification of Mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in Fungi

    Get PDF
    G protein-coupled receptors (GPCRs) in humans are classified into the five main families named Glutamate, Rhodopsin, Adhesion, Frizzled and Secretin according to the GRAFS classification. Previous results show that these mammalian GRAFS families are well represented in the Metazoan lineages, but they have not been shown to be present in Fungi. Here, we systematically mined 79 fungal genomes and provide the first evidence that four of the five main mammalian families of GPCRs, namely Rhodopsin, Adhesion, Glutamate and Frizzled, are present in Fungi and found 142 novel sequences between them. Significantly, we provide strong evidence that the Rhodopsin family emerged from the cAMP receptor family in an event close to the split of Opisthokonts and not in Placozoa, as earlier assumed. The Rhodopsin family then expanded greatly in Metazoans while the cAMP receptor family is found in 3 invertebrate species and lost in the vertebrates. We estimate that the Adhesion and Frizzled families evolved before the split of Unikonts from a common ancestor of all major eukaryotic lineages. Also, the study highlights that the fungal Adhesion receptors do not have N-terminal domains whereas the fungal Glutamate receptors have a broad repertoire of mammalian-like N-terminal domains. Further, mining of the close unicellular relatives of the Metazoan lineage, Salpingoeca rosetta and Capsaspora owczarzaki, obtained a rich group of both the Adhesion and Glutamate families, which in particular provided insight to the early emergence of the N-terminal domains of the Adhesion family. We identified 619 Fungi specific GPCRs across 79 genomes and revealed that Blastocladiomycota and Chytridiomycota phylum have Metazoan-like GPCRs rather than the GPCRs specific for Fungi. Overall, this study provides the first evidence of the presence of four of the five main GRAFS families in Fungi and clarifies the early evolutionary history of the GPCR superfamily
    corecore