7,742 research outputs found

    Psychometric characteristics of the Spanish version of the Sport Imagery Questionnaire

    Get PDF

    Pyroclastic density currents (PDC) of the 16-17 August 2006 eruptions of Tungurahua volcano, Ecuador: Geophysical registry and characteristics

    Get PDF
    Tungurahua, located in the Eastern Cordillera of the Ecuadorian Andes, is a 5023 m-high active volcano, notable for its extreme relief (3200 m), steep sides, and frequent eruptive cycles. From 1999 until 2006 Tungurahua experienced short periods of low to moderate strombolian activity, characterized by fire fountaining, explosions, frequent ash falls and debris flows, and no PDC events. Without warning, Tungurahua initiated PDC activity on 15–16 July 2006, which became more intense on the night of 16–17 August 2006, which is the focus of this study. Continuous monitoring of Tungurahua has employed seismic (both short period and broadband (BB) instruments), SO2 gas emission (COSPEC and DOAS), and geodetic methods (EDM, tilt meters, and GPS), in addition to thermal imagery (airborne and ground-based). Acoustic flow monitors (AFM) installed to monitor lahar activity were important for detecting PDC events. Acoustic signals were monitored at Riobamba, 40 km to the SW, as well as by infrasound sensors at Tungurahua's BB seismic stations. Based on geophysical parameters, visual observations, and PDC deposit characteristics, four phases of distinct eruptive activity are recognized during the 16–17 August episode. Phase I (08H37 to 21H13 of 16 Aug.) (local time) experienced low to moderate strombolian activity with occasional high energy impulsive bursts and small PDC. Phase II (21H13-16 Aug. to 00H12-17 Aug.) was characterized by a number of discrete events with high amplitude seismo-acoustic signals, followed by the generation of larger PDC that overran monitoring stations and had velocities of 30–33 m/s. After midnight, Phase III (00H12 to 01H14) saw an intense period of unrelenting eruptive activity corresponding to the episode's greatest energy release. It was characterized by subplinian activity accompanied by a series of high energy outbursts and constant low frequency jetting that together formed a continuous plume. It was during this phase that the largest PDC were produced, reaching the surrounding river valleys. Phase IV (after 01H14) followed the cessation of the paroxysmal eruption, but witnessed many granular PDC generated by degassed lava spill outs from the crater that developed lobe and channel morphology on the cone's lower flanks. Hours later a blocky lava flow issued from the crater. During these episodes, more than 30 PDC events were detected, the majority being small flows that remained high on the cone. The two largest PDC occurred after midnight, probably generated by fountain collapse. Their descent down the cone's upper steep flanks (~ 28°) and 2.4 km in length favored air entrainment, resulting in PDC with greater fluidity. These flows had volumes of 9 to 17 × 106 m3 and produced widespread, but relatively thin (1–2 m thick) normally-graded deposits at their distal ends. The character and evolution of the PDC activity apparently reflect decreasing volatile contents of the magma and a diminishing magma supply

    Combining Magma Flow and Deformation Modeling to Explain Observed Changes in Tilt

    Get PDF
    The understanding of magma ascent dynamics is essential in forecasting the scale, style and timing of volcanic eruptions. The monitoring of near-field deformation is widely used to gain insight into these dynamics, and has been linked to stress changes in the upper conduit. The ascent of magma through the conduit exerts shear stress on the conduit wall, pulling up the surrounding edifice, whilst overpressure in the upper conduit pushes the surrounding edifice outwards. How much shear stress and pressure is produced during magma ascent, and the relative contribution of each to the deformation, has until now only been explored conceptually. By combining flow and deformation modeling using COMSOL Multiphysics, we for the first time present a quantitative model that links magma ascent to deformation. We quantify how both shear stress and pressure vary spatially within a cylindrical conduit, and show that shear stress generally dominates observed changes in tilt close to the conduit. However, the relative contribution of pressure is not insignificant, and both pressure and shear stress must be considered when interpreting deformation data. We demonstrate that significant changes in tilt can be driven by changes in the driving pressure gradient or volatile content of the magma. The relative contribution of shear stress and pressure to the tilt varies considerably depending on these parameters. Our work provides insight into the range of elastic moduli that should be considered when modeling edifice-scale rock masses, and we show that even where the edifice is modeled as weak, shear stress generally dominates the near field deformation over pressurization of the conduit. While our model addresses cyclic tilt changes observed during activity at Tungurahua volcano, Ecuador, between 2013 and 2014, it is also applicable to silicic volcanoes in general

    Prevalence of Type VI Secretion System in Spanish Campylobacter jejuni Isolates.

    Get PDF
    Infections from Campylobacter jejuni pose a serious public health problem and are now considered the leading cause of foodborne bacterial gastroenteritis throughout the world. Sequencing of C. jejuni genomes has previously allowed a number of loci to be identified, which encode virulence factors that aid survival and pathogenicity. Recently, a Type VI secretion system (T6SS) consisting of 13 conserved genes was described in C. jejuni strains and recognised to promote pathogenicity and adaptation to the environment. In this study, we determined the presence of this T6SS in 63 Spanish C. jejuni isolates from the food chain and urban effluents using whole-genome sequencing. Our findings demonstrated that nine (14%) strains harboured the 13 ORFs found in prototype strain C. jejuni 108. Further studies will be necessary to determine the prevalence and importance of T6SS-positive C. jejuni strains

    Inspection of floating platform mooring chains with a climbing robot

    Get PDF
    This paper describes the development of Moorinspect, a novel robot that can climb on platform mooring chains both underwater and in air to non-destructively test (NDT) each link with long range ultrasound guided waves. The prototype robot is designed to be able to climb up/down a mooring chain for up to twenty metres below the surface, climb up through the splash zone to the first link which is located in air and connected to the turret of a Floating Production Storage and Offloading (FPSO) facility. This first link suffers the most intense stresses and fatigue failure and thus it is important to test its integrity. A robot that can climb through the splash zone (considered to be the most dangerous zone for human divers) will be the first of its kind. The robot is able to cope with link dimension variations due to corrosion and biological fouling and link curvatures caused by bent links, chain curvature due to gravity, and links twisted at angles of up to eight degrees around a nominal angle of ninety degrees. The robot places an NDT collar consisting of ultrasound probes around the full circumference of each link to be tested. The design has been analysed extensively using Von Mises stress analysis to ensure that the robot is strong and robust enough to carry a sensor payload of more than 70 kg and a robot weighing 500 kg in air and is able to operate in the splash zone. A first prototype chain climbing robot has been tested via trials on a four link mooring chain suspended in air and while immersed in a diving tank

    Quantification of virus syndrome in chili peppers

    Get PDF
    One of the most important problems to produce chili crops is the presence of diseases caused by pathogen agents, such as viruses, therefore, there is a substantial necessity to better predict the behavior of the diseases of these crops, determining a more precise quantification of the disease’s syndrome that allows the investigators to evaluate better practices, from handling to the experimental level and will permit producers to take opportunistic corrective action thereby, reducing production loses and increasing the quality of the crop. This review discussed methods that have been used for the quantification of disease in plants, specifically for chili peppers crops, thereby, suggesting a better alternative for the quantification of the disease’ syndromes in regards to this crop. The result of these reflections indicates that most methods used for quantification are based on visual assessments, discarding differences of data between distinctive evaluators. These methods generate subjective results.Key words: Quantification, plant diseases, severity, syndrome, viruses

    Dark halo baryons not in ancient halo white dwarfs

    Get PDF
    Having ruled out the possibility that stellar objects are the main contributor of the dark matter embedding galaxies, microlensing experiments cannot exclude the hypothesis that a significant fraction of the Milky Way dark halo might be made of MACHOs with masses in the range 0.5-0.8 \msun. Ancient white dwarfs are generally considered the most plausible candidates for such MACHOs. We report the results of a search for such white dwarfs in a proper motion survey covering a 0.16 sqd field at three epochs at high galactic latitude, and 0.938 sqd at two epochs at intermediate galactic latitude (VIRMOS survey), using the CFH telescope. Both surveys are complete to I = 23, with detection efficiency fading to 0 at I = 24.2. Proper motion data are suitable to separate unambiguously halo white dwarfs identified by belonging to a non rotating system. No candidates were found within the colour-magnitude-proper motion volume where such objects can be safely discriminated from any standard population as well as from possible artefacts. In the same volume, we estimate the maximum white dwarf halo fraction compatible with this observation at different significance levels if the halo is at least 14 gigayears old and under different ad hoc initial mass functions. Our data alone rules out a halo fraction greater than 14% at 95% confidence level. Combined with two previous investigations exploring comparable volumes pushes the limit below 4 % (95% confidence level) or below 1.3% (64% confidence), this implies that if baryonic dark matter is present in galaxy halos, it is not, or it is only marginally in the form of faint hydrogen white dwarfs.Comment: accepted in Astronomy and Astrophysics (19-05-2004

    La enseñanza de la ciencia en Infantil y Primaria: una introducción

    Get PDF
    PDF en castellano, 5 páginas con imágenes.Documento de trabajo para el inicio del proyecto titulado "Scientific literacy at the school: improving strategies and building new practices of science teaching in early years education" cofinanciado por el programa Erasmus Plus de la Unión Europea.El objetivo general de estas páginas es reflexionar sobre la nueva concepción de alfabetización científica de la sociedad desde mediados del siglo XX hasta nuestros días, periodo en que han aparecido tres conceptos fundamentales: la etapa de los benchmarks, el periodo de la naturaleza de la investigación (NIC) y, por último, la visión de la naturaleza de la ciencia (VNOS), así como los objetivos de igualdad de género contemplados en el Proyecto Europeo H2020.N

    K-7 science teaching: an introduction

    Get PDF
    PDF document, 5 pages. Work document proyect "Scientific literacy at the school: improving strategies and building new practices of science teaching in early years education" financied by Erasmus Plus Program. European Union.[EN] The overall objective of these pages is to think over the evolution of the concepts of scientific literacy of the society since the mid-twentieth century to the present day. In this period, the meaning of the expression has undergone certain changes, that can be divided into three periods: a first stage characterized by the elaboration of benchmarks, a second period centered in the Nature of the Scientific Research (NSR) and, finally, a third stage devoted to the so-called vision of the nature of science (VNOS). On the same footing as the science learning and according to the guidelines of the European H2020, we should also consider the removal of existing barriers that generate discrimination against women in scientific careers.N
    corecore