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One of the most important problems to produce chili crops is the presence of diseases caused by 
pathogen agents, such as viruses, therefore, there is a substantial necessity to better predict the 
behavior of the diseases of these crops, determining a more precise quantification of the disease’s 
syndrome that allows the investigators  to  evaluate better practices, from handling to the experimental 
level and will permit producers to take opportunistic corrective action thereby, reducing production 
loses and increasing the quality of the crop. This review discussed methods that have been used for the 
quantification of disease in plants, specifically for chili peppers crops, thereby, suggesting a better 
alternative for the quantification of the disease’ syndromes in regards to this crop. The result of these 
reflections indicates that most methods used for quantification are based on visual assessments, 
discarding differences of data between distinctive evaluators. These methods generate subjective 
results. 
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INTRODUCTION 
 
Since the inception of agriculture, the study of plant 
diseases has been of great interest to humanity. Plant 
diseases are caused by pathogens, such as fungi, oomy-
cetes, bacteria, nematodes, viruses that cause serious 
economic losses to both agricultural and horti-cultural 
crops (Anderson et al., 2004; Gamliel, 2008; Leuven, 
2006; Vlugt, 2006). Handling of diseases in chili 
cultivation has gained importance in the world. All chili 
peppers belong to the genus Capsicum of the 
Solanaceae family of plants (Ochoa-Alejo and Ramírez-
Malagón, 2001). Capsicum annuum L. is the most 
popular chili species grown worldwide (Mahasuk et al., 
2009; Moscone et al., 2007). They are an indispensable 
ingredient employed for food preparation in the world and 
an important product utilized in the pharmaceutical, food, 
cosmetic  and  poultry  industries  (Jin  et  al., 2009).  The  
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main producers of chili are China, Mexico, Turkey and 
USA. The export value of this species represents US 
$2,811,590,000 worldwide. In Mexico, its production 
represents US $576,690,000 (Valadez-Bustos et al., 
2009). As with other crops, the production of chili pepper 
is affected by biotic and abiotic factors that reduce its 
crop quality and yield (Berrocal and Chaverri, 2009; 
Mondino, 2008; Ochoa-Alejo and Ramírez-Malagón, 
2001; Polishchuk et al., 2006; Pscheidt, 2003; Valadez-
Bustos et al., 2009). Viruses are responsible for causing 
severe losses in pepper crop production (Lee et al., 
2009). In particular, the group of viruses known as 
geminiviruses is principally found in tropical and subtro-
pical zones. These viruses are generally transmitted by 
insect vectors to a great variety of mono and dicotyle-
donous plants (Cerkauskas, 2004; Fernández et al., 
2009). Some of the symptoms caused by Geminiviruses 
include: rolling up of the leaf, wrinkles, yellow mosaic, 
midget growth and chlorosis and generally, a notable 
reduction in yield (Toruño, 2005). Geminiviruses are 
characterized  by   their   circular   single   stranded  DNA  
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Figure 1. Classification of geminiviruses. 
 
 
 

genomes, encapsidated in twinned icosahedra particles 
(Anaya-Lopez et al., 2003; Fauquet et al., 2008; 
Fernández et al., 2009; García-Cano et al., 2008; 
Godínez-Hernández et al., 2001; Gutierrez, 2000; 
Krupovic et. al., 2009; Morales and Anderson, 2001; 
Mubin et al., 2007; Mugiira et al., 2008; Pietersen et al., 
2008; Tahir et al., 2009; Zelada, 2009; Zúñiga and 
Ramírez, 2002). Based on the insect vector, genome 
organization and host range geminiviruses are classified 
into four genera (Figure 1): Begomovirus, Mastrevirus, 
Curtovirus and Topocuvirus (Agrios, 2005; Bananej et al., 
2009; Briddon et al., 2008; Carrillo-Tripp et al., 2006; 
Chatterjee et al., 2007; Fazeli et al., 2008; Ha et al., 
2008; He et al., 2009; Hernández-Zepeda et al., 2007; 
Huang et al., 2006; Hull, 2004; Hussain et al., 2009; Ito et 
al., 2009; Kumar et al., 2008; León et al., 2004; Nawaz-
ul-Rehman and Fauquet, 2009; Rentería et al., 2008; 
Rivera and Vega-Arreguín, 2001; Rojas, 2004; Sakata et 
al., 2008; Singh et al., 2009; Thresh, 2006; Yang et al., 
2007). 

Hybrids and varieties of C. annuum are severely attac-
ked by begomoviruses in Mexico and Central America 
(Thresh, 2006). Begomoviruses have a monopartite or 
bipartite genome, transmitted by whitefly vector (Bemisia 
tabaci) and infect dicotyledonous plants (Dong et al., 

2007; Kumar et al., 2008; Martínez, 2008; Ueda et al., 
2008). Two of the most important begomoviruses affect-
ting chili plants are Pepper Huasteco yellow vein virus 
(PHYVV) and Pepper golden mosaic virus (PepGVV) 
(Thresh, 2006).  

The objective of this analysis was to understand the 
most common methods to quantify plant diseases and 
propose new approaches, specifically in the syndromes 
of diseases which are caused by viruses affecting the 
growth of chili peppers. There is crucial urgency to pro-
pose new forms of quantification of disease in chili pep-
per which is supported by traditional and compu-tational 
vision methods in order to decrease the sub-jectivity in 
the evaluation and therefore, permitting better prediction 
of the diseases’ behavior in order to take corrective 
action and reduce crop losses. 
 
 
QUANTIFICATION OF PLANT DISEASES 
 
Disease assessment is defined as the process of quanti-
tatively measuring disease intensity. In plant pathology, 
there are two basic and distinct populations that can be 
quantitatively assessed; the pathogen population and the 
disease population (Nutter et al., 2006). 
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Disease assessment is directly related to the stage at 
which it is being developed. Factors such as temperature, 
moisture and crop plant resistance will influence the final 
disease level more than the initial inoculum (Cooke et al., 
2006; Lovell et al., 2004). In some cases, infected plants 
only show slight symptoms or do not show symptoms 
(asymptomatic or latent infection). The symptoms of 
disease can be confused with pathogens but can be 
caused by other problems (Salazar, 1986). Furthermore, 
the combined infection of several viruses can change the 
symptom’s expression, as it is the case with gemin-
iviruses. 

Quantification of the disease syndrome in plants 
consists of a set of measurements carried out at a pre-
determined point in time. There are several factors or 
variables that need to be considered to conduct the 
quantification, for example, the presence of local symp-
toms such as chlorosis lesions, systemic symptoms such 
as lesions fund on almost the entire plant and other 
agents such as physical, chemical and biological that are 
capable of inducing similar symptoms as of those 
produced by viruses (Hull, 2004). Before the quanti-
fication can be carried out, it is necessary to ascertain the 
presence of pathogens already present in the plant. 
Accurate detection and identification of plant pathogens 
are fundamental to plant pathogen diagnostics and thus, 
plant disease management. The specific limitations of 
culture-based morphological techniques to adequately 
identify plant pathogens have led to the development of 
culture-independent molecular approaches. In the last 
two decades, many different serological and nucleic acid-
based techniques have been developed for the detection 
and identification of plant pathogens. Some of these 
techniques also permit reliable quantification of the target 
pathogen and supply the information that is required to 
estimate risks with respect to disease development, 
spread of the inoculum and economic losses (Leuven, 
2006). 

Detection methods are classified as biochemical, 
microscopy, immunology, nucleic acid hybridization and 
other traditional methods such as identification by visual 
inspection in situ or in vitro in pure cultures by 
microscopic examination (Fox, 1997). Some advantages 
and disadvantages of these methods are described in 
Table 1. 

Conventional methods to detect plant pathogens have 
often relied on interpretation of symptoms, biochemical or 
morphological identification, usually following isolation 
and culturing of the organism in vitro and sometimes, on 
further characterization based on pathogenicity tests. 
Although, these methods are fundamental to diagnostics, 
the accuracy and reliability of these methods largely 
depend on skilled taxonomical expertise. In addition, 
diagnosis requiring a culturing step is time consuming 
and labor intensive. Furthermore, quantification based on 
these culturing techniques is considered relatively 
inaccurate and unreliable. Finally,  these  techniques  rely  

 
 
 
 
on the ability of the organism to be cultured in vitro. This 
latter aspect is a considerable limitation since possibly 
less than 1% of the microorganisms in an environmental 
sample may be cultured in vitro (Leuven, 2006).  

In contrast, more recently developed methods that are 
based on molecular approaches are increasingly being 
used to detect and identify plant pathogens. These 
include immunological (or serological) and nucleic acid-
based techniques. Compared to conventional assays, 
these techniques are more suitable for routine analyses 
since they are generally faster, more specific, more 
sensitive and more accurate and can be performed and 
interpreted by personnel with no taxonomical expertise. 
In addition, since no culturing step is required, these 
techniques are equally suitable for the detection of 
culturable as well as non-culturable microorganisms. 
Many different molecular assays have been described for 
the detection and identification of pathogens, each 
requiring its own protocol, equipment and expertise 
(Leuven, 2006). 

Once the pathogens are identified, quantification 
methods of disease syndromes are used with respect to 
plant disease management, especially quantification of a 
pathogen upon its detection and identification; is an 
important aspect as it can be used to estimate potential 
risks regarding disease development, spread of the 
inoculum and economic losses. Apart from this potential, 
it provides the information required to take appropriate 
management decisions. Nevertheless, several studies 
have shown that by extensive optimization of PCR 
conditions, quantification in endpoint analysis-based 
polymerase chain reaction (PCR) assays can be perfo-
rmed. More recently, the introduction of real-time PCR 
technology, which is characterized by on-line measure-
ment of amplicons as they accumulate during each cycle 
has improved and simplified methods for PCR-based 
quantification. Currently, in plant pathology, real-time 
PCR is the most reliable culture-independent technique 
to quantify the presence of specific pathogens as well as 
for the quantification of disease progress (Leuven, 2006). 
While nucleic acid-based assays provide an excellent 
opportunity for rapid and precise detection, currently their 
success largely depends on well-equipped laboratory 
facilities (Leuven, 2006).  

Numerous qPCR (Quantitative polymerase chain reac-
tion) methods have been developed and used for 
detection and quantification of plant pathogens and for 
disease diagnostics (Berruyer et al., 2006; Li et al., 
2008). 

Quantification of disease progression is desirable for 
numerous reasons including evaluating control strategies 
and predicting future levels of disease (Madden, 1980). 
Epidemiological models can be classified in several 
ways. For convenience, Kranz and Royle (1978) classi-
fied them into three types such as descriptive, predictive 
and conceptual, according to their main objective 
(Maanen and Xu, 2003).  Mathematical  tools  have  been  
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Table 1. Detection methods of pathogens in plants. 
 

Method Advantage Disadvantage 

Visual Inspection (including  
teledetection) 

Quick detection when the 
symptoms are well defined and 
clearly exposed. 
 

Symptoms should be adjusted to one of 
the syndromes. 

Soil hides symptoms. 

Inspector should have ample 
experience. 

   

Identification of pure cultures of 
pathogens 

Most morphological taxonomic 
characters are well documented.  

Production of pure in vitro crops is 
required and not quick or completely 
reliable.  

Identification is not always easy if recent 
literature is not available.  

Specified means of growth may not be 
available.  

   

Biochemical methods Substrate utilization has been well 
developed for bacteria of medical 
importance and biochemical 
methods have much potential to 
diagnose bacterial pathogens in 
plant pathology. 

Chromatographic methods are now 
mature technology, including 
polyacrylamide-gel electrophoresis 
(PAGE). 

Sufficient volume of an unknown isolate 
must be produced in pure culture for 
some chromatographic techniques 
including SDS-PAGE. 

These methods are not very fast and 
have not been designed to be used 
easily in the field. 

   

Microscopic exam Viruses and bacteria can be 
examined by electronic 
microscope. 

Requires a careful inspection by experts 
and equipment. 

Electron microscopy requires expertise. 

Microscopy is expensive.  

   

Immunological methods Most are simple techniques. 

Most methods are quick.  

Results are accurate and clear.  

Pathogens which cause diseases 
with variable or latent symptoms on 
the host plant can be separated.  

Pathogens with an indistinct 
structure or an undistinguished 
morphology such as in many 
groups of viruses and bacteria may 
be distinguished. 

Specific methods have not yet been 
developed for most diseases.   

Not effective for viroids which lack a 
protein coat. 

 

 
 

   

Techniques for nucleic acids Nucleic acid probes have already 
been prepared to a range of viral 
plant pathogens. 

Hybridization tests are useful in 
quarantine for detect the unknown 
pathogens (including viroids).  

Hybridization tests are not yet widely 
used against many fungi and bacteria. 

Nucleic acid hybridization "dot blot' tests 
are likely to continue to be carried out 
only in a laboratory. 

 
 
 

employed to create models which provide a description of 
epidemic dynamics; the common mathematical tools 
used are: disease progress curves, linked differential 
equation (LDE), area under disease progress curve 
(AUDPC) and computer simulation. There are other tools 

that have been employed in epidemiology of plant 
disease like: statistical tools, visual evaluations and 
pictorial assessment (Contreras-Medina et al., 2009). The 
growth models commonly used are, monomolecular, 
exponential, logistic and gompertz. These describe the  
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disease’ progress and can be represented by curves that 
indicate the severity with respect to time and distance 
(Contreras-Medina et al., 2009; Cooke et al., 2006; 
Madden, 1980; Nutter, 2007; Ojiambo et al., 2000). The 
evaluation is fundamental in the study and analysis of the 
disease epidemics in plants and is indispensable to 
estimate the crop loses and predict the expenses that will 
be incurred for its control. 

Cooke et al. (2006) suggested evaluations using 
certain sampling methods such as; (a) random, (b) arbi-
trary (c) systematic and (d) stratified. The size of the 
sample is very important, that it is referred to in different 
methods like a graph, based on the coefficient of 
variability (randomized space, binominal negatives, 
binominal positives, Taylor´s relation) and the circle of 
possibilities. 
 
 
Quantification methods 
 
Disease can be measured using direct methods or 
indirect methods. Direct methods are concerned with 
both the quantitative and qualitative estimations of 
disease (Cooke et al., 2006). 
 
 
Direct quantitative methods  
 
In plant pathology, the three most common measures of 
disease are: (1) prevalence, (2) incidence, and (3) 
severity of disease (Cooke et al., 2006). 
 
 

Prevalence 
 
Prevalence is defined as the number of geographical 
units (fields, farms, countries, states, regions, etc.) where 
a disease or pathogen has been detected, divided by the 
total of the geographical units evaluated (Cooke et al., 
2006).  
 
 
Incidence  
 
When measuring disease, one is interested in measuring 
the incidence of the disease. The incidence of the 
disease, is the number or proportion of plant units that 
are diseased (the number or proportion of plants, leaves, 
stems and fruit that show any symptoms) in relation to 
the total number of the units examined. This measure is 
continuously used in the epidemiological studies, to 
measure the propagation of a disease within a given field, 
region or country (Agrios, 2005). Incidence calculation is 
done through the following formula: 
 
                           Number of plants (or parts) x 100  
Incidence (I) =  
                           Total number of plants (o parts) observed  

 
 
 
 
Severity 
 
When measuring disease, one is interested in measuring 
the severity of the disease, that is, the proportion of area 
or amount of plant tissue that is diseased (Agrios, 2005; 
Cooke et al., 2006). Measurement is said to be 
determined with greater accuracy according to the total 
seriousness of the disease, but such determination is 
slower and tend to be subjective when done solely by 
visual inspection, due to the variations or errors of visual 
acuity. Kwack et al. (2005) supported that visual assess-
ment by the human eye usually tends to overestimate 
disease severity, especially with low levels of infection. 
Moreover, Lorenzini et al. (2000) suggested that the 
visual assessments are made quickly and do not require 
expensive equipment, chemical analysis or highly trained 
personnel, but their subjective nature creates concern 
and determines that the accuracy and precision of the 
measurement of injuries are questionable. Mirik et al. 
(2006) refers to the differences in assessments done by 
humans occur because individuals differ in their capability 
to perceive various wavelengths in visible spectra. The 
formula to calculate severity using an evaluation scale is: 
 
                               (Number of plants x each degree) x 100  
Severity (S) (%) =  
                                Number of plants evaluated x highest degree  
 

One of the recommended first steps in the study of 
epidemics new diseases is the development of reliable 
methods to estimate disease severity. Without reliable 
estimates, determination of disease progress rates, com-
parison of treatments such as cultivars or control 
measures and prediction of future disease or yield loss is 
not possible (O`Brien, 1992). 
Disease assessment scales often are used for disease 
severity measurements. There are two general types of 
disease assessment scales: qualitative scales based on 
a subjective division of disease severity into levels and 
quantitative scales based on a quantitative trait, for 
example, percentage of the plant or plant part diseaded. 
Ideally, scales should be quick, easy to use, applicable 
over a range of conditions and reproducible, with suffi-
cient intervals to represent all stages of disease develop-
ment. Objective criteria such as accuracy, precision and 
correlation to yield loss should guide selection of one 
scale over another, but these criteria have rarely been 
used. Lack of standardization of disease severity scales 
may preclude comparison among experiments and/or 
observers (O`Brien, 1992). Table 2 shows the descript-
tion, advantages and disadvantages of certain 
quantitative methods. 

Visual methods are widely used due to their simplicity 
and cost. When using these methods, scales are most 
often used based on the fact that the majority to affect 
foliage or fruit is arbitrary selected as the interval 
between the different classes that is usually implemented 
to categorize different degrees of the disease´s intensity  
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including SDS-PAGE. 
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examined by electronic 
microscope. 

Requires a careful inspection by experts 
and equipment. 

Electron microscopy requires expertise. 

Microscopy is expensive.  

   

Immunological methods Most are simple techniques. 

Most methods are quick.  

Results are accurate and clear.  

Pathogens which cause diseases 
with variable or latent symptoms on 
the host plant can be separated.  

Pathogens with an indistinct 
structure or an undistinguished 
morphology such as in many 
groups of viruses and bacteria may 
be distinguished. 

Specific methods have not yet been 
developed for most diseases.   

Not effective for viroids which lack a 
protein coat. 

 

 
 

   

Techniques for nucleic acids Nucleic acid probes have already 
been prepared to a range of viral 
plant pathogens. 

Hybridization tests are useful in 
quarantine for detect the unknown 
pathogens (including viroids).  

Hybridization tests are not yet widely 
used against many fungi and bacteria. 

Nucleic acid hybridization "dot blot' tests 
are likely to continue to be carried out 
only in a laboratory. 

 
 
 

(Tovar-Soto et al., 2002). 
Confection of evaluation scales of each disease in each 

crop will be carried out by the evaluator, depending on 
the pathogen´s characteristics, not only the symptoms 
are considered but also, the negative effect of the crop 

are measured. A number of studies have been reported 
elsewhere about using severity scales which includes; 
Anaya-López et al. (2003), Arzate et al.(2006), 
Chellappan et al.(2004), Dalla et al. (2005), Guigón and 
González-González,  (2001),  Hernández-Verdugo  et  al.  
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(2000), Holb et al. (2003), Kumar a et al. (2006), Latham 
and Jones, (2004), Maruthi et al. (2002), Mendez et al. 
(2002), Orlandini et al. (2008), Owor et al. (2004),  Piper 
et al. (1996) and Torres-Limache (2004). 

Relationships between incidence and severity are an 
epidemiologically significant concept; any quantifiable 
relationship between the two parameters may permit 
more precision. Three types of analysis have been used 
to describe this relationship, including, correlation and 
regression, multiple infection models and the measure-
ment of aggregation (Cooke et al., 2006). 
 
 
Technological approaches in plant disease and pest 
detection 
 
On the other hand, the use of technology has permitted 
to count utilizing computer programs that permit a com-
parison of the estimated severity with the real severity. 
Nutter and Schultz (1995) concluded that, the accuracy 
and precision of disease assessments was improved 
simply by selecting the most appropriate methods and by 
training observers to assess disease severity using 
computerized disease assessment training programs 
such as AREAGRAM, DISTRAIN and “Disease.Pro”. 
Although AREAGRAM graded user’s performance, it 
generated only standard area diagrams with fixed 
disease patterns. DISTRAIN was developed as a training 
programs for disease assessment using variegated 
patterns of disease severity for eight common foliar 
diseases of cereals; the program also allowed a 
comparison of estimated severity with actual severity. 
Nutter and Worawitlikit (1989) expanded the computer 
training concept in their advanced program for peanut 
diseases, “Disease.Pro” and later in 1998, developed a 
more generic disease assessment program, “Severity. 
Pro”, that allowed the user to select from a menu of leaf 
shapes (alfalfa, apple, barley, cucumber, grape, tomato) 
and lesion types (anthracnose, blotch, downy mildew, 
target spot, powdery mildew) so mimicking almost any 
foliar pathosystem (Cooke et al., 2006). 
 
 
Direct qualitative methods 
 
Direct qualitative assessments of disease are used to 
differentiate host responses or interactions, ideally under 
controlled conditions, where resistance or susceptibility is 
determined by genetic systems in the host and pathogen. 
Qualitative assessment key have been developed to 
determine the resistance or susceptibility regarding the 
pathogen (Edwards et al., 1997; Khan and Boyd, 1969; 
Rosielle, 1972). In the field, the assessment of reaction 
types such as those described here is often more difficult 
than under controlled conditions, as host-pathogen 
interactions can be modified by environmental variables 
such as temperature and leaf surface wetness (Cooke et  

 
 
 
 
al., 2006). 
 
 
Indirect methods  
 
Indirect methods of disease assessment have increased 
in number with the development of new technologies. 
Among these methods are remote sensor, infrared photo-
graphy, image analysis, differential infrared thermometer, 
recount of spore and ELISA test (Maanen and Xu, 2003; 
Nutter et al., 2006; Nutter, 2007; Polishchuk et al., 2006; 
Vlugt, 2006). Thus, the chemical assays used for these 
biomarkers provide sophisticated quantitative techniques 
for the indirect assessment of disease severity in plant 
tissue. Other indirect methods use spore production as a 
measure of severity; Gough (1978) described a method 
for evaluating wheat cultivar response to Septoria tritici 
based on pycnidiospore production from soaked leaf 
segments using haemacytometer counts (Cooke et al., 
2006). 

Traditional methods, although still widely used, are 
rapidly being replaced by immunological and nucleic acid-
based techniques. Of particular interest in the quantitative 
assessment of plant disease are user-friendly enzyme-
linked immunosorbent assay (ELISA) kits for use in the 
field and the use of the polymerase chain reaction (PCR), 
particularly quantitative PCR (qPCR), for determining 
infection in plant material (Cooke et al., 2006). 
 
 
Remote sensing 
 
The use of aerial photography and photogrammetry using 
infrared film or color filter combinations to enhance the 
differentiation between healthy and diseased tissue, 
represent a separate approach to disease assessment 
and were first used by Neblette (1927) and Taubenhaus 
et al. (1929) for surveying infection by cotton root rot 
(caused by Phymatotrichum omnivorum) in Texas and by 
Bawden (1933) in studies of virus diseases of potato and 
tobacco (Cooke et al., 2006). 

Researchers currently have methods to measure the 
disease’s intensity using instruments with better visual 
accuracy. These methods analyze the differences bet-
ween the damaged and healthy tissues. Some of these 
methods are based on the analysis of images and aerial 
photographs by means of infrared cameras that detect 
the differences of light reflection between healthy and 
diseased plants (Araus, 1998). These differences can be 
identified using thermal perception instruments, film 
photographs (natural or infrared color) or the analysis of 
digital image processes. This has created a big boom in 
remote perception that can be carried out through 
satellites and planes which permits monitoring of large 
crop areas in a short time and in a more practical way. 
Infrared film is usually used because near-infrared and 
infrared  light  are  reflected  deeper  in  leaf  tissue  than  



 
 
 
 
visible light (Campbell and Madden, 1990). Early films 
were mainly analyzed using densitometry but, in later 
years, advanced image processing and spectral analysis 
were employed. Remote sensing now relies on digital 
image processing and image analysis, including 
advanced nuclear magnetic resonance imaging (NMRI), 
for the interpretation and quantification of non-destructive 
disease measurements in crops (Cooke et al., 2006).  

Remote sensing for detecting and estimating severity of 
plant diseases is used at three altitudes or levels above 
the crop canopy. At the lowest altitude, within 1.5 to 2.0 
m above crop height, hand-held multispectral radiometers 
or multiple waveband video cameras are used; at 75 to 
1500 m, aerial photography is used, whereas at the 
highest altitude, satellite imagery is employed utilizing 
satellites orbiting at 650 to 850 km above the earth’s 
surface (Cooke et al., 2006). An advantage of these 
methods is that the evaluation can be permanent. Un-
fortunately, the details are not clearly distinguishable 
because of the altitude at which the evaluation is carried 
out. In the same case the disease is hidden by healthy 
leaves when the levels of the disease are very low or the 
symptoms of the disease are found on basal leaves. 

In 2002, image analysis software called ASSESS was 
made available by The American phytopathological 
society for plant disease quantification. The software was 
optimized for the measurement of leaf area, percentage 
of area infected, lesion/pustule count, root length and 
ground cover. ASSESS relies on the hue-saturation-
intensity color model enabling the user to effectively 
extract the leaf from the background and then the lesions 
from the leaf (Cooke et. al., 2006). 

The application of remote sensing to plant pathology 
lies mainly in the detection of crop the stress. A plant or 
plant population becomes stressed when a biotic or biotic 
factor adversely affects growth and development 
(Nilsson, 1995). Stress or disease can be expressed in 
various ways, such as imbalance in water supply leading 
to stomatal closure, decreased photosynthesis with asso-
ciated changes in leaf fluorescence (Daley, 1995) and 
evapotranspiration and increased leaf surface tempe-
rature. Other symptoms may include leaf curling, wilting, 
stunting, chlorosis and necrosis of plant parts. Remote 
sensing provides a method for detecting and assessing 
such changes. However, it is likely that remote sensing 
will remain an indirect method of assessing plant disease 
through the interpretation of deviations from the norm, 
such as leaf temperature, rather than directly measuring 
reductions in leaf area due to disease (Cooke et. al., 
2006). 

Moreover, it has been reported that certain research in 
which color digital images have been used to identify 
pathogen agents, as demonstrated in the research of 
Camargo and Smith, (2009a), where artificial vision was 
presented for the identification of the visual symptoms of 
plant diseases. This began with color images. The digital 
images  show   unhealthy   regions   of  the  cultures  that  
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Camargo and Smith, (2009 b) referred to as being for the 
use of the segmentation of images in the detection of 
affected regions. Again, this method is not totally 
systematic because it depends on human observation. 
Solís et al. (2009) described an algorithm called LOSS 
which is capable of detecting white flies, some of which 
transmit disease. Recognizing and counting plague units 
within a plant nursery were carried out. This algorithm 
was designed considering geometrical characteristics of 
the white fly which include: (a) the projection area, (b) the 
eccentricity and (c) the solidity of the segmented insects. 
Kenneth (2009) presented the use of color infrared photo-
graphy to detect disease of plants within greenhouse. 
Barón and Pineada (2009) detected early symptoms of 
diseases in plants using an instrument called “image 
fluorometer” which is capable of detecting diseases in 
plants and the movement of the pathogen within the 
plant; therefore, demonstrating its performance mecha-
nism. This instrument is capable of diagnosing the 
“vegetal stress” (biotic like abiotic), caused by factors 
such as dryness, cold, heat and excess or lack of light. 
The image fluorometer captures images of red fluore-
scent which is dissipated by the pigment of the plants, 
diminishing its capacity to perform photosynthesis and 
receive excessive solar light. Traditional visual damage 
and disease quantifications in plants suffer from a lack of 
accuracy and precision. An alternative method that is 
consistent, unbiased and precise is computer automated 
digital image analysis. Computerized digital image 
analysis is also a non-destructive and non-invasive 
method that can capture, process and analyze informa-
tion from images. Digital image analysis has been used in 
several studies to quantify disease (Mirik et al., 2006). 
There is still a lot of work to be done in this field of 
research to create new quantitative measures that are 
more accurate, precise and economical. 
 
 
QUANTIFICATION OF THE CHILI PEPPER VIRUS 
SYNDROME 
 
Studies about quantification of chili pepper diseases, 
indicates that today visual assessment are used to 
estimate the severity of the disease in this crop, using 
severity scales, as shown in Table 3. These scales are 
composed of degrees, levels, categories, scales and/or 
values, of severity related to the symptoms observed. 
One of the most notable differences is the fact that some 
have more levels than others; furthermore, the esta-
blished range or percentage is different and can be 
developed according to different necessities. There are 
no standards that permit comparisons between them, for 
example, when the degree and description of the 
symptom are different. Moreover, qualifying adjectives 
are used to describe the intensity and the magnitude of 
the disease’s symptoms that again suggest subjectivity. 
Certain  adjectives   that   are   presented   in  such  scale  
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Table 3. Scales of Severity used in quantification of pepper diseases. 
 

Used scale in the evaluation of the 
observed syndrome in regards to time in 
different types of infected peppers with 
the PHYVV and PepGMV 

Severity scale to evaluate the 
fungus and ash in chili pepper 

cultivation. Salaices, Chihuahua 
Mexico, 1998 

Severity Scale to evaluate 
damage by viruses in the chili 
pepper cultivation. Chihuahua, 
Mexico, 1998 

Level description Category 
Infected area (%) 

Category Symptom 
Plant Leaf 

1 Mild wrinkling of the apicals leafs and the 
presence of light yellow dots of 
approximately 1mm diam. Only visible 
when exposing    the leaves to light. 

1 0-25 0-30 1 Yellow mosaic. 

2 Appearance of light yellow dots in 
Isolated groups in the apicals leaves. 

2 26-50 0-30    

3 The groups of isolated dots begin to 
observe as a web mainly in the base of 
the apicals leafs. 

3 51-75 0-30 2 Mosaic more 
shortening 

4 The web is totally visible. 4 76-100 0-30    

5 Protuberance formations shaped as 
Insulas in the middle of the leafs that at 
first manifest the symptoms. 

5 0-25 31-60 3 Mosaic more 
shortening and more 
damage to the fruit. 

6 The protuberances begin to lightly curl 
the leaf. 

6 26-50 31-60    

    7 51-75 31-60    

    8 76-100 31-60    

    9 0-25 61-100    

    10 26-50 61-100    

    11 51-75 61-100    

    12 76-100 61-100    

 Scale developed by: Torres (1997) Scale used by: Guijon (2001)          Scale used by: Guijon (2001) 
 
 
 

include; “mild” and “lightly” Torres (1997) scale; “light” 
and “lightly” (Hernández-Verdugo et al. 2000) scale; 
“few”, “more”, “some”, “severe”, “moderate”, “very” and 
“significant” (Pipper, 1996) scale. In this manner, neither 
the degree nor the description indicates with precision the 
intensity in which a symptom manifests itself, therefore, 
quantification may be questionable. In this sense, it is 
difficult to determine which scale is the best. Therefore, a 
short term alternative is to develop an accurate and 
precise standardized method of quantifying the syn-
dromes of chili pepper disease that is used to predict the 
behavior of the diseases. 
 
 
FUTURE TRENDS 
 
There is a notable trend toward more sophisticated 
solutions involving techniques of machine vision for 
detection and quantification of syndrome disease in 
plants. There is an increasing need for research that 
includes the development of tools to quantify the syn-
dromes of the disease in chili crops, caused by 
geminiviruses such as Pepper Huasteco yellow vein virus 
(PHYVV) and Pepper golden mosaic virus (PepGMV). 
Also, the quantification must be standardized and used 

like a base for any syndrome virus-plant. Current analysis 
show subjectivity in the different scales; therefore, it is 
necessary to create quantification methods that consider 
the syndrome and respond to the following criteria: How 
mild, light, moderate, or severe is the intensity of the 
disease’s syndrome? One proposal of a quantifying 
method is shown in Figure 2 that includes a procedure to 
quantify the traditional form and a proposal of systematic 
quantification that outlines the use of processing digital 
colored images. With such devices, it is possible to obtain 
a less subjective quantification that generates accurate 
and precise data about the severity of the diseases and 
provide the necessary elements in order to make oppor-
tune choice, reducing losses in the production of the 
pepper crops. Obviously, the future will bring new techno-
logies for detecting plant pathogens, largely because of 
the current efforts in genomics and molecular bio-
systematics and because of new platforms that have 
been developed primarily in the field of clinical medicine 
or even in the field of biological warfare. Whenever 
appropriate, they generally find their way somewhat later 
to plant pathogen diagnostics as well. Most progress can 
be expected from the development of simple and rapid 
devices for onsite pathogen detection. Recently, new 
formats  using  antibody-based  detection  for  very  rapid  
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Table 3. Continued. 
 

Scales of classifying leaf curl disease 
reactions caused by PepLCV in Capsicum 

Anthracnose severity scores and the symptom description on chili 
fruit and seedling leaf 

Severity grade Symptom Score Chili fruit Seedling leaf 

0 No symptom. 0 Infection absence. - 

 

1 

 

0 to 5% curling and 
clearing of upper leaves. 

 

1 

 

 

1 to 2% of the fruit area shows 
necrotic lesion or a larger 
water soaked lesion 
surrounding the infection site. 

Localized cellular death, 
lesions (<1 mm) with a defined 
margin – hypersensitive 
reaction. 

 

2 

 

6 to 25 curling, clearing of 
leaves and swelling of 
veins. 

 

3 

 

>2.5% of the fruit area shows 
necrotic lesion, acervuli may 
be present/or water soaked 
lesion up to 5% of fruit surface. 

 

Small isolated necrotic lesions 
covering approximately 1% of 
the leaf area. 

3 

 

26 to 50% curling 
puckering and yellowing of 
leaves and swelling of 
veins. 

 

5 

 

>5 to 15% of the fruit area 
shows necrotic lesion, acervuli 
present/or water soaked lesion 
up to 25% of the fruit surface. 

Larger discrete necrotic 
lesions covering 
approximately 5% of the leaf 
area. 

4 

 

 

51 to 75% leaf curling and 
stunted plant growth and 
blistering of internodes. 

 

7 

 

>15 to 25% of the fruit area 
shows necrotic lesion with 
acervuli.  

Coalesced necrotic lesions 
covering approximately 10% 
of the leaf area, acervuli 
presence. 

 

5 

 

 

 

 More than 75% curling 
and deformed small 
leaves, stunted plant 
growth with small flowers 
and no or small fruit set. 

 

9 

 

 

>25% of the fruit area shows 
necrotic, lesion often encircling 
the fruit, abundant acervuli. 

 

Coalesced necrotic lesions 
covering > 25% of the leaf 
area with abundant acervuli. 

Scale developed by Banerjee (1987) and used 
by:Kumar et al. (2006) 

Scale developed by:Montri et al. (2009 and used by Cai et al. (2009), and                
modified by Mahasuk et al. (2008) 

 
 
 

Table 3. Continued. 
 

Severity scale used on bell peppers Severity scales of the disease on species C. annuum 

Grade Description Severity 
grade 

Symptom 

0 No visual disease symptom. 0 Symptom absence. 

1 Vascular discoloration or stem necrosis. 1 Light distortion of the apical leafs and yellow dots on the 
leaves exposed to sunlight. 

2 Vascular discoloration and stem necrosis. 2 Visible yellow dots on isolated apical zones of the leaves. 

3 Wilting and no vascular discoloration. 3 Isolated yellow dots begin to unite forming a web on the 
base of the apical leaves. 

4 Wilting and vascular discoloration. 4 Visible webs of yellow stains clearly configured. 

5 Death. 5 Wrinkles in the middle of leaves. 

  6 Light curving of the leaves. 

  7 Light leaf distortion wrinkling of the leaves. 

  8 Distortion of the entire leaf. 

  9 The leaves of the infected plants, less than the controlled 
plants. 

Scale used by: Sanogo (2006). Scale proposed by: William (1988) and used by Hernández-Verdugo et 
al. (2000). 

 
 
 

presumptive on-site diagnosis have become available. 
These do not require specialized equipment or 
knowledge. 

CONCLUSION 
 
There are few methods of  quantification  to  evaluate  the  
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Table 3. Continued. 
 

Scale used to evaluate the disease at the root, the leaf and fruit 
Scale used for rating severity of SCMV-MDMV-B and 

MDMV infection on eastern gamagrass 

Root Leaf Fruit Value 

 

 

Symptom description 

 

 

Scal
e 'A' 

Tissue with 
disease (%) 

Scal
e ‘B' 

Tissue 

with 

disease (%) 

Scale 
'C' 

Diameter of the 

lesion (mm) 

      0 Healthy, no virus visible. 

1 < 2 1 < 2.5  < 2 1 Very mild symptoms on one or more leaves. 
Mosaic not extremely distinct and little yellowed 
area on any symptomatic leaf. 

2 2.1-10 2 2.6-7.5 1 2.1-4 

3 10.1-25 3 7.6-12.5 2 4.1-6 

4 25.1-45 4 12.6-17.5 3 6.1-10 2 Mild symptoms on one or more leaves. 
Symptoms more distinct and /or more leaf area 
with mosaic than in 1. Not necessary more 
leaves infected. 

5 45.1-75 5 17.6-32.5 4 > 0 

6 > 75 6 32.6-67.5 5  

 3 Moderate symptoms on one or more leaves. 
Mosaic distinct, even bright. More leaf area, 
and/or more leave with symptoms than 1 or 2. 

4 Moderate symptoms (as in 2 or 3) but more 
widespread than 3. Some healthy tillers 
present. Especially, more symptomatic leaves 
per tiller. No necrosis or stunting visible. 

5 Severe symptoms, widespread on plant. 
Especially, most to all leaves on a tiller showing 
symptoms. 

6 Severe symptoms, as in 5, but in addition either 
noticeable stunting or small to moderate 
amount of necrosis. 

7 Very severe symptoms, severe stunting, 
obvious and significant amount of necrosis. 

Scale used by Holb et al. (2003) Scale used by Pipper (1996) 
 
 
 

syndrome in chili plants caused by viruses available, 
more specifically for the chili pepper. The quantifications 
currently reported, suggest ambiguity within the evalua-
tion scales used to measure symptoms severity. These 
methods do not indicate the degree when a symptom is 
present, such as is in the case of the scale developed by 
Torres (1997). A specific example is when an evaluator 
from a scale, assigns a value to determine that the plant 
shows wrinkling, this value does not indicate in real 
terms, the magnitude of wrinkling symptom. Thus, these 
situations suggest that further discussion is necessary. 
Furthermore, the fact that evaluators generally carry out 
quantifications for severity through visual observations 
and the criteria from one evaluator to another is different 
and can be problematic. Quantification disease’s syn-
dromes are still not very addressed or diffused in the 
currently published research. Finally, in scales, a 
disadvantage is the different degrees and categorization 
from severity besides using numbers, percentage, 
adjectives denominations and description of the disease. 
There is not even an agreement to evaluate different 
parts of the plant. Scales are developed by different 
people with particular interests; there are not associations 

that define standards to quantify plants. One of the most 
important disadvantages is that the quantification of plant 
diseases on the world-wide level is backward in progress; 
the quantification is a delicate situation where further-
more, the syndrome and the interpretation differed from 
one another. Therefore, there needs to be fewer sugges-
tive systematic methods that improve productivity of 
crops and that permit early detection of plant disease 
symptoms for chili pepper crops, for example, by means 
of analyzing color images, identifying in an early way, 
plant disease symptoms in chili crops with the objective 
of providing producers with a tool that will better predict 
the behavior of the diseases caused by the viruses. For 
this reason, the search for biotechnological alternatives 
that may increase the productivity of this Solanaceae 
member is necessary. 
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