36 research outputs found

    Dynamique moléculaire par imagerie attoseconde

    Get PDF
    Since the first observation of high-order harmonic spectra in gases, high harmonic generation (HHG) has demonstrated its importance, opening a door to the field of attosecond sience. The bandwidth of the emitted spectrum reaches up to the XUV. The attosecond pulses reach a very high time resolution, allowing the study of electron dynamics in atoms or molecules. The generation mechanism of HHG is based on the emission of an attosecond electron wavepacket by the atoms/molecules. The electron wavepacket is accelerated by the laser field and finally recombines radiatively with its parent ion. Thus the structural information of the probed orbital is encoded in the high harmonic spectrum with a spatial resolution of one Angtröm and a temporal resolution of few femtoseconds. HHG can be used as a probe signal resolved for pump-probe spectroscopy. High harmonic spectroscopy allows the study of the orbital structure and ultra-fast molecular dynamics. In this thesis the fundamental mechanisms playing a role in atoms, molecules and condensed matter are probed using HHG. In order to understand how to extract dynamical and structural information of orbitals from a harmonic signal, we have first studied an easy and well known system: the argon atom. A new theoretical approach developped by Fabre and Pons allowed us to reproduce the experimental results in good agreement. We continued with a study of the molecular structure and dynamics of N2 and CO2. A supersonic Even-Lavie jet permitted to reach rotational temperatures lower than 10K with an excellent alignment distribution. Owing to the good alignment in such gas jet, we were able to resolve the orbital structure with a higher sensitivity and to identify the contribution of several orbitals. In the next step we used the sensitivity of HHG towards the structure of molecular orbitals in order to probe the complex dynamics of NO2 in the vicinity of a conical intersection. We applied HHG combined with transient grating spectroscopy which leads to a higher sensitivity of the excited molecules. We then continued with studying cluster. We were able to disentangle the contribution of large clusters to the harmonic signal due to a 2D spatio-spectral representation of a temperature dependent differential measurement. Our analysis suggests a new generation mechanism in clusters and allows an estimation of the electron correlation length in clusters. This thesis ends with the presentation of a XUV beamline. This technique uses the emitted fs-XUV radiation, provided by HHG, as a probe pulse for ionizing the photofragments by a one photon transition.Depuis sa premiĂšre observation, la gĂ©nĂ©ration d'harmoniques d'ordre Ă©levĂ© (GHOE) dans les gaz a demontrĂ© son importance, ouvrant la voie Ă  la science attoseconde. Cette technique produit un rayonnement impulsionnel XUV qui s'Ă©tend dans le domaine spectral intermĂ©diaire entre l'ultraviolet et les rayons X. Ces impulsions attosecondes donnent accĂšs Ă  des rĂ©solutions temporelles extrĂȘemes, permettant ainsi d'observer des dynamiques Ă©lectroniques dans des atomes ou des molĂ©cules. En effet le processus de gĂ©nĂ©neration d'harmonique repose sur l'oscillation de paquets d'Ă©lectrons attosecondes issus des molĂ©cules, accĂ©lĂ©rĂ©s par le champ de laser intense et se recombinant radiativement avec leurs ions molĂ©culaires parents. Ainsi, le rayonnement harmonique Ă©mis lors de la recombinaison permet d'encoder l'information structurale sur le ou les orbitales impliquĂ©es avec une rĂ©solution spatiale de l'ordre l'Angström et temporelle femtoseconde ou attoseconde. La gĂ©nĂ©ration d'harmonique peut ĂȘtre utilisĂ©e comme signal de sonde dans des expĂ©riences de spectroscopie pompe-sonde rĂ©solue en temps. Ces expĂ©riences de spectroscopie harmoniques permettent d'Ă©tudier la structure des orbitales et les dynamiques molĂ©culaires ultra-rapides. L'objectif de cette thĂšse est d'utiliser le processus de la GHOE, pour sonder les processus fondamentaux qui interviennent dans les atomes, les molĂ©cules et la matiĂšre condensĂ©e. Tout d'abord, pour comprendre comment extraire des informations dynamiques ou structurelles sur les orbitales Ă  partir du signal harmonique nous avons Ă©tudiĂ© un systĂšme simple et connu: l'argon. Une nouvelle approche thĂ©orique dĂ©veloppĂ©e par Fabre et Pons a permis de reproduire fidĂšlement l'expĂ©rience. Nous avons continuĂ© Ă  Ă©tudier la structure et la dynamique molĂ©culaire dans N2 et CO2. Les molĂ©cules issues d'un jet supersonique Even-Lavie qui permettait d'obtenir des tempĂ©ratures rotationelles de moins de 10K ont Ă©tĂ© alignĂ©es par laser avec un fort degrĂ© d'alignement. Ce type de jet permet d'amĂ©liorer la sensibilitĂ© Ă  la structure des orbitales impliquĂ©es et d'identifier la contribution de plusieurs orbitales. Ensuite nous avons utilisĂ© la sensibilitĂ© de la gĂ©nĂ©ration des harmoniques d'ordre Ă©levĂ© Ă  la structure des orbitales molĂ©culaires pour sonder la dynamique complexe du NO2 excitĂ© autour d'une intersection conique. Nous avons appliquĂ© la mĂ©thode du rĂ©seau d'excitation transitoire qui permet d'amĂ©liorer la sensibilitĂ© aux molĂ©cules excitĂ©es. Nous avons donc menĂ© une Ă©tude dans les agrĂ©gats. A l'aide d'une Ă©tude diffĂ©rentielle en tempĂ©rature et d'une mĂ©thode de cartographie spectrale et spatiale, nous avons pu isoler la contibution des grands agrĂ©gats. Notre analyse suggĂšre un nouveau mĂ©canisme de gĂ©nĂ©ration par des agrĂ©gats et permet mĂȘme une estimation de la longeur de corrĂ©lation des Ă©lectrons dans les agrĂ©gats. Ce manuscrit se termine avec la prĂ©sentation d'une ligne de lumiĂšre XUV. Cette technique consiste Ă  utiliser le rayonnement XUV fs produit par la GHOE comme impulsion sonde pour ioniser des fragments de dissociation molĂ©culaire Ă  l'aide d'une transition Ă  un photon

    The Junctional Adhesion Molecule 3 (JAM-3) on Human Platelets is a Counterreceptor for the Leukocyte Integrin Mac-1

    Get PDF
    The recently described junctional adhesion molecules (JAMs) in man and mice are involved in homotypic and heterotypic intercellular interactions. Here, a third member of this family, human JAM-3, was identified and described as a novel counterreceptor on platelets for the leukocyte ÎČ2-integrin Mac-1 (αMÎČ2, CD11b/CD18). With the help of two monoclonal antibodies, Gi11 and Gi13, against a 43-kD surface glycoprotein on human platelets, a full-length cDNA encoding JAM-3 was identified. JAM-3 is a type I transmembrane glycoprotein containing two Ig-like domains. Although JAM-3 did not undergo homophilic interactions, myelo-monocytic cells adhered to immobilized JAM-3 or to JAM-3–transfected cells. This heterophilic interaction was specifically attributed to a direct interaction of JAM-3 with the ÎČ2-integrin Mac-1 and to a lower extent with p150.95 (αXÎČ2, CD11c/CD18) but not with LFA-1 (αLÎČ2, CD11a/CD18) or with ÎČ1-integrins. These results were corroborated by analysis of K562 erythroleukemic cells transfected with different heterodimeric ÎČ2-integrins and by using purified proteins. Moreover, purified JAM-3 or antibodies against JAM-3 blocked the platelet-neutrophil interaction, indicating that platelet JAM-3 serves as a counterreceptor for Mac-1 mediating leukocyte–platelet interactions. JAM-3 thereby provides a novel molecular target for antagonizing interactions between vascular cells that promote inflammatory vascular pathologies such as in atherothrombosis

    Interview Survey of Chief Executives of Medium-sized Companies Vol.30

    Get PDF
    Additional file 4. Densitometric analysis of troponin T, periostin, carbonic anhydrase 3 and cytoglobin in sham, MI-placebo and MI-SAR1 mice. The densitometric measurements of proteins are expressed as a percentage of the average values measured in the sham group. Results are expressed as mean ± SEM

    65 YEARS OF THE DOUBLE HELIX Genetics informs precision practice in the diagnosis and management of pheochromocytoma

    Get PDF
    Although the authors of the present review have contributed to genetic discoveries in the field of pheochromocytoma research, we can legitimately ask whether these advances have led to improvements in the diagnosis and management of patients with pheochromocytoma. The answer to this question is an emphatic Yes! In the field of molecular genetics, the well-established axiom that familial (genetic) pheochromocytoma represents 10% of all cases has been overturned, with >35% of cases now attributable to germline disease-causing mutations. Furthermore, genetic pheochromocytoma can now be grouped into five different clinical presentation types in the context of the ten known susceptibility genes for pheochromocytoma-associated syndromes. We now have the tools to diagnose patients with genetic pheochromocytoma, identify germline mutation carriers and to offer gene-informed medical management including enhanced surveillance and prevention. Clinically, we now treat an entire family of tumors of the paraganglia, with the exact phenotype varying by specific gene. In terms of detection and classification, simultaneous advances in biochemical detection and imaging localization have taken place, and the histopathology of the paraganglioma tumor family has been revised by immunohistochemical-genetic classification by gene-specific antibody immunohistochemistry. Treatment options have also been substantially enriched by the application of minimally invasive and adrenal-sparing surgery. Finally and most importantly, it is now widely recognized that patients with genetic pheochromocytoma/paraganglioma syndromes should be treated in specialized centers dedicated to the diagnosis, treatment and surveillance of this rare neoplasm.Peer reviewe

    Preventive medicine of von Hippel-Lindau disease-associated pancreatic neuroendocrine tumors

    Get PDF
    Pancreatic neuroendocrine tumors (PanNETs) are rare in von Hippel-Lindau disease (VHL) but cause serious morbidity and mortality. Management guidelines for VHL-PanNETs continue to be based on limited evidence, and survival data to guide surgical management are lacking. We established the European-American-Asian-VHL-PanNET-Registry to assess data for risks for metastases, survival and long-term outcomes to provide best management recommendations. Of 2330 VHL patients, 273 had a total of 484 PanNETs. Median age at diagnosis of PanNET was 35 years (range 10-75). Fifty-five (20%) patients had metastatic PanNETs. Metastatic PanNETs were significantly larger (median size 5 vs 2\u2009cm; P\u20091.5\u2009cm in diameter were operated. Ten-year survival was significantly longer in operated vs non-operated patients, in particular for PanNETs <2.8\u2009cm vs 652.8\u2009cm (94% vs 85% by 10 years; P\u2009=\u20090.020; 80% vs 50% at 10 years; P\u2009=\u20090.030). This study demonstrates that patients with PanNET approaching the cut-off diameter of 2.8\u2009cm should be operated. Mutations in exon 3, especially of codons 161/167 are at enhanced risk for metastatic PanNETs. Survival is significantly longer in operated non-metastatic VHL-PanNETs

    Attosecond imaging of molecular dynamics

    No full text
    Depuis sa premiĂšre observation, la gĂ©nĂ©ration d'harmoniques d'ordre Ă©levĂ© (GHOE) dans les gaz a demontrĂ© son importance, ouvrant la voie Ă  la science attoseconde. Cette technique produit un rayonnement impulsionnel XUV qui s'Ă©tend dans le domaine spectral intermĂ©diaire entre l'ultraviolet et les rayons X. Ces impulsions attosecondes donnent accĂšs Ă  des rĂ©solutions temporelles extrĂȘemes, permettant ainsi d'observer des dynamiques Ă©lectroniques dans des atomes ou des molĂ©cules. En effet le processus de gĂ©nĂ©neration d'harmonique repose sur l'oscillation de paquets d'Ă©lectrons attosecondes issus des molĂ©cules, accĂ©lĂ©rĂ©s par le champ de laser intense et se recombinant radiativement avec leurs ions molĂ©culaires parents. Ainsi, le rayonnement harmonique Ă©mis lors de la recombinaison permet d'encoder l'information structurale sur le ou les orbitales impliquĂ©es avec une rĂ©solution spatiale de l'ordre l'Angström et temporelle femtoseconde ou attoseconde. La gĂ©nĂ©ration d'harmonique peut ĂȘtre utilisĂ©e comme signal de sonde dans des expĂ©riences de spectroscopie pompe-sonde rĂ©solue en temps. Ces expĂ©riences de spectroscopie harmoniques permettent d'Ă©tudier la structure des orbitales et les dynamiques molĂ©culaires ultra-rapides. L'objectif de cette thĂšse est d'utiliser le processus de la GHOE, pour sonder les processus fondamentaux qui interviennent dans les atomes, les molĂ©cules et la matiĂšre condensĂ©e. Tout d'abord, pour comprendre comment extraire des informations dynamiques ou structurelles sur les orbitales Ă  partir du signal harmonique nous avons Ă©tudiĂ© un systĂšme simple et connu: l'argon. Une nouvelle approche thĂ©orique dĂ©veloppĂ©e par Fabre et Pons a permis de reproduire fidĂšlement l'expĂ©rience. Nous avons continuĂ© Ă  Ă©tudier la structure et la dynamique molĂ©culaire dans N2 et CO2. Les molĂ©cules issues d'un jet supersonique Even-Lavie qui permettait d'obtenir des tempĂ©ratures rotationelles de moins de 10K ont Ă©tĂ© alignĂ©es par laser avec un fort degrĂ© d'alignement. Ce type de jet permet d'amĂ©liorer la sensibilitĂ© Ă  la structure des orbitales impliquĂ©es et d'identifier la contribution de plusieurs orbitales. Ensuite nous avons utilisĂ© la sensibilitĂ© de la gĂ©nĂ©ration des harmoniques d'ordre Ă©levĂ© Ă  la structure des orbitales molĂ©culaires pour sonder la dynamique complexe du NO2 excitĂ© autour d'une intersection conique. Nous avons appliquĂ© la mĂ©thode du rĂ©seau d'excitation transitoire qui permet d'amĂ©liorer la sensibilitĂ© aux molĂ©cules excitĂ©es. Nous avons donc menĂ© une Ă©tude dans les agrĂ©gats. A l'aide d'une Ă©tude diffĂ©rentielle en tempĂ©rature et d'une mĂ©thode de cartographie spectrale et spatiale, nous avons pu isoler la contibution des grands agrĂ©gats. Notre analyse suggĂšre un nouveau mĂ©canisme de gĂ©nĂ©ration par des agrĂ©gats et permet mĂȘme une estimation de la longeur de corrĂ©lation des Ă©lectrons dans les agrĂ©gats. Ce manuscrit se termine avec la prĂ©sentation d'une ligne de lumiĂšre XUV. Cette technique consiste Ă  utiliser le rayonnement XUV fs produit par la GHOE comme impulsion sonde pour ioniser des fragments de dissociation molĂ©culaire Ă  l'aide d'une transition Ă  un photon.Since the first observation of high-order harmonic spectra in gases, high harmonic generation (HHG) has demonstrated its importance, opening a door to the field of attosecond sience. The bandwidth of the emitted spectrum reaches up to the XUV. The attosecond pulses reach a very high time resolution, allowing the study of electron dynamics in atoms or molecules. The generation mechanism of HHG is based on the emission of an attosecond electron wavepacket by the atoms/molecules. The electron wavepacket is accelerated by the laser field and finally recombines radiatively with its parent ion. Thus the structural information of the probed orbital is encoded in the high harmonic spectrum with a spatial resolution of one Angtröm and a temporal resolution of few femtoseconds. HHG can be used as a probe signal resolved for pump-probe spectroscopy. High harmonic spectroscopy allows the study of the orbital structure and ultra-fast molecular dynamics. In this thesis the fundamental mechanisms playing a role in atoms, molecules and condensed matter are probed using HHG. In order to understand how to extract dynamical and structural information of orbitals from a harmonic signal, we have first studied an easy and well known system: the argon atom. A new theoretical approach developped by Fabre and Pons allowed us to reproduce the experimental results in good agreement. We continued with a study of the molecular structure and dynamics of N2 and CO2. A supersonic Even-Lavie jet permitted to reach rotational temperatures lower than 10K with an excellent alignment distribution. Owing to the good alignment in such gas jet, we were able to resolve the orbital structure with a higher sensitivity and to identify the contribution of several orbitals. In the next step we used the sensitivity of HHG towards the structure of molecular orbitals in order to probe the complex dynamics of NO2 in the vicinity of a conical intersection. We applied HHG combined with transient grating spectroscopy which leads to a higher sensitivity of the excited molecules. We then continued with studying cluster. We were able to disentangle the contribution of large clusters to the harmonic signal due to a 2D spatio-spectral representation of a temperature dependent differential measurement. Our analysis suggests a new generation mechanism in clusters and allows an estimation of the electron correlation length in clusters. This thesis ends with the presentation of a XUV beamline. This technique uses the emitted fs-XUV radiation, provided by HHG, as a probe pulse for ionizing the photofragments by a one photon transition

    Dynamique moléculaire par imagerie attoseconde

    No full text
    Depuis sa premiĂšre observation, la gĂ©nĂ©ration d'harmoniques d'ordre Ă©levĂ© (GHOE) dans les gaz a demontrĂ© son importance, ouvrant la voie Ă  la science attoseconde. Cette technique produit un rayonnement impulsionnel XUV qui s'Ă©tend dans le domaine spectral intermĂ©diaire entre l'ultraviolet et les rayons X. Ces impulsions attosecondes donnent accĂšs Ă  des rĂ©solutions temporelles extrĂȘmes, permettant ainsi d'observer des dynamiques Ă©lectroniques dans des atomes ou des molĂ©cules. En effet le processus de gĂ©nĂ©neration d'harmonique repose sur l'oscillation de paquets d'Ă©lectrons attosecondes issus des molĂ©cules, accĂ©lĂ©rĂ©s par le champ de laser intense et se recombinant radiativement avec leurs ions molĂ©culaires parents. Ainsi, le rayonnement harmonique Ă©mis lors de la recombinaison permet d'encoder l'information structurale sur le ou les orbitales impliquĂ©es avec une rĂ©solution spatiale de l'ordre l'Angström et temporelle femtoseconde ou attoseconde. La gĂ©nĂ©ration d'harmonique peut ĂȘtre utilisĂ©e comme signal de sonde dans des expĂ©riences de spectroscopie pompe-sonde rĂ©solue en temps. Ces expĂ©riences de spectroscopie harmoniques permettent d'Ă©tudier la structure des orbitales et les dynamiques molĂ©culaires ultra-rapides. L'objectif de cette thĂšse est d'utiliser le processus de la GHOE, pour sonder les processus fondamentaux qui interviennent dans les atomes, les molĂ©cules et la matiĂšre condensĂ©e. Tout d'abord, pour comprendre comment extraire des informations dynamiques ou structurelles sur les orbitales Ă  partir du signal harmonique nous avons Ă©tudiĂ© un systĂšme simple et connu: l'argon. Une nouvelle approche thĂ©orique dĂ©veloppĂ©e par Fabre et Pons a permis de reproduire fidĂšlement l'expĂ©rience. Nous avons continuĂ© Ă  Ă©tudier la structure et la dynamique molĂ©culaire dans N2 et CO2. Les molĂ©cules issues d'un jet supersonique Even-Lavie qui permettait d'obtenir des tempĂ©ratures rotationelles de moins de 10K ont Ă©tĂ© alignĂ©es par laser avec un fort degrĂ© d'alignement. Ce type de jet permet d'amĂ©liorer la sensibilitĂ© Ă  la structure des orbitales impliquĂ©es et d'identifier la contribution de plusieurs orbitales. Ensuite nous avons utilisĂ© la sensibilitĂ© de la gĂ©nĂ©ration des harmoniques d'ordre Ă©levĂ© Ă  la structure des orbitales molĂ©culaires pour sonder la dynamique complexe du NO2 excitĂ© autour d'une intersection conique. Nous avons appliquĂ© la mĂ©thode du rĂ©seau d'excitation transitoire qui permet d'amĂ©liorer la sensibilitĂ© aux molĂ©cules excitĂ©es. Nous avons donc menĂ© une Ă©tude dans les agrĂ©gats. A l'aide d'une Ă©tude diffĂ©rentielle en tempĂ©rature et d'une mĂ©thode de cartographie spectrale et spatiale, nous avons pu isoler la contibution des grands agrĂ©gats. Notre analyse suggĂšre un nouveau mĂ©canisme de gĂ©nĂ©ration par des agrĂ©gats et permet mĂȘme une estimation de la longeur de corrĂ©lation des Ă©lectrons dans les agrĂ©gats. Ce manuscrit se termine avec la prĂ©sentation d'une ligne de lumiĂšre XUV. Cette technique consiste Ă  utiliser le rayonnement XUV fs produit par la GHOE comme impulsion sonde pour ioniser des fragments de dissociation molĂ©culaire Ă  l'aide d'une transition Ă  un photon.Since the first observation of high-order harmonic spectra in gases, high harmonic generation (HHG) has demonstrated its importance, opening a door to the field of attosecond sience. The bandwidth of the emitted spectrum reaches up to the XUV. The attosecond pules reach a very high time resolution, allowing the study of electron dynamics in atoms or molecules. The generation mechanism of HHG is based on the oscillation of the attosecond electron wavepacket emitted by the atoms/molecules, accelerated by the laser field. The electron wavepacket finally recombines radiatively with its parent ion. Thus the structural information of the probed orbital is encoded in the high harmonic spectrum with a spatial resolution of one Angtröm and a temporal resolution of few femtoseconds. HHG can be used as a probe signal resolved for pump-probe spectroscopy. High harmonic spectroscopy allows the study of the orbital structure and ultra-fast molecular dynamics.In this thesis the fundamental mechanisms playing a role in atoms, molecules and condensed matter are probed using HHG. In order to understand how to extract dynamical and structural information of orbitals from a harmonic signal, we have studied an easy and well known systems: the argon atom. A new theoretical approach developped by Fabre and Pons allowed us to reproduce the experimental results in good agreement. We continued with a study of the molecular structure and dynamics of N2 and CO2. A supersonic Even-Lavie jet permitted to reach rotational temperatures lower than 10K with an excellent alignment distribution. Owing to the good alignment in such gas jet, we were able to resolve the orbital structure with a higher sensitivity and to identify the contribution of several orbitals. In the next step we used the sensitivity of HHG towards the structure of molecular orbitals in order to probe the complex dynamics of NO2 in the vicinity of a conical intersection. We applied HHG combined with transient grating spectroscopy which leads to a higher sensitivity of the excited molecules. We then continued with studying cluster. We were able to disentangle the contribution of large clusters to the harmonic signal due to a 2D spatio-spectral representation of a temperature dependent differential measurement. Our analysis suggests a new generation mechanism in clusters and allows an estimation of the electron correlation length in clusters. This thesis ends with the presentation of a XUV beamline. This technique uses the emitted fs-XUV radiation, provided by HHG, as a probe pulse for ionizing the photofragments by a one photon transition

    Low-energy electron attachment to SF₆ molecules: Vibrational structure in the cross-section for SF₆⁻ formation up to 1 eV

    Get PDF
    In high resolution electron attachment to SF₆, cusp structure due to interchannel coupling has been observed in the cross-section for SF₅⁻ formation at the thresholds for vibrational excitation of the SF₆(v₁) mode up to v₁ = 10. It is superimposed on the broad band peaking around 0.55 eV which has been previously attributed to attachment into a repulsive potential surface and subsequent direct dissociation. The newly observed vibrational structure as well as electron energy loss spectra (which exhibit strong excitation of the v₁ mode up to high quantum numbers) indicate, however, that both the channel yielding the long-lived SF₆⁻ anions and the dissociative SF₅⁻ + F channel have a common primary attachment process, mediated by the same SF₆⁻ scattering state and strongly coupled to the process of vibrational excitation

    New light on the Kr⁻(4p⁔5sÂČ) Feshbach resonances: high-resolution electron scattering experiments and <i>B</i>-spline <i>R</i>-matrix calculations

    Get PDF
    In a joint experimental and theoretical effort, we carried out a detailed study of electron scattering from Kr atoms in the energy range of the low-lying Kr⁻(4p55s24p^5 5s^2) Feshbach resonances. Absolute angle-differential cross sections for elastic electron scattering were measured over the energy range 9.3–10.3 eV with an energy width of about 13 meV at scattering angles between 10° and 180°. Using several sets of elastic scattering phase shifts, a detailed analysis of the sharp Kr⁻(4p^5 5s^2 ^2 P3/2P_{3/2}) resonance was carried out, resulting in a resonance width of Γ3/2 = 3.6(2) meV. By direct comparison with the position of the Ar⁻(3p^5 4s^2 ^2P_{3/2}) resonance, the energy for the Kr⁻(4p^5 5s^2 ^2P_{3/2}) resonance was determined as E3/2 = 9.489(3) eV. A Fano-type fit of the higher lying Kr⁻(4p^5 5s^2 ^2P_{1/2}) resonance yielded the resonance parameters Γ1/2 = 33(5) meV and E1/2 = 10.126(4) eV. In order to obtain additional insights, B-spline R-matrix calculations were performed for both the elastic and the inelastic cross sections above the threshold for 4p54p^5 ,5s excitation. They provide the total and angle-differential cross sections for excitation of long-lived and short-lived levels of the 4p54p^5, 5s configuration in Kr and branching ratios for the decay of the Kr⁻(4p^5 5s^2 ^2P_{1/2}) resonance into the three available exit channels. The results are compared with selected experimental data
    corecore