267 research outputs found

    Upflows in the central dark lane of sunspot light bridges

    Full text link
    We use high spatial and spectral resolution observations obtained with the CRisp Imaging SpectroPolarimeter at the Swedish 1-m Solar Telescope to analyze the velocity profile of granular light bridges in a sunspot. We find upflows associated with the central dark lanes of the light bridges. From bisectors in the Fe I 630.15 nm line we find that the magnitude of the upflows varies with height with the strongest upflows being deeper in the atmosphere. Typical upflow velocities measured from the 70% bisector are around 500 m/s with peaks above 1 km/s. The upflows in the central dark lane are surrounded by downflows of weaker magnitude, sometimes concentrated in patches with enhanced velocities reaching up to 1.1 km/s. A small spatial offset between the upflows and the continuum dark lane is interpreted as a line-of-sight effect due to the elevated nature of the dark lane and the light bridge above the umbral surroundings. Our observations show that the central dark lane in granular light bridges is not equivalent to the intergranular lanes of normal photospheric granulation that host convective downflows. These results support recent MHD simulations of magneto-convection in sunspot atmospheres.Comment: Accepted for publication in Astrophysical Journal Letter

    Assessing and improving sustainability of urban water resources and systems : AISUWRS work-package 4 : field investigations final report

    Get PDF
    This final field investigations report comprises the second part of Deliverable D10 of the project “Assessing and Improving the Sustainability of Urban Water Resources and Systems” (AISUWRS). It is jointly produced by the UK partners the British Geological Survey and the Robens Centre for Public and Environmental Health of the University of Surrey. The AISUWRS project is a 3-year urban water research programme partly funded by the European Community 5th Framework Programme-Shared Cost Research Technological Development and Demonstration. It aims to develop an innovative modelling system of the urban water infrastructure that can inform decision support systems for cities that depend on underlying or nearby aquifers for their water supply. Doncaster is one of the four case study cities being examined in Work Package 4 of this project; the others being Rastatt (Germany), Ljubljana (Slovenia) and Mt. Gambier (Australia). Since the publication of the interim report (CR/04/022N), the UK project team at the Robens Centre and the BGS have completed the field investigations phase and used the results to write a number of technical papers for publication in peer-reviewed journals or conference proceedings. This report brings together the drafts of these papers as they provide most of the key results of the field investigations in a concise form. The key findings of the field-based investigations described in these papers is brought together at the end as an Outcomes and Conclusions section, while the new data (analytical results) collected from Work Package 4’s field monitoring and surveillance activities in the Doncaster area are listed in Appendices 1 and 2

    Fast and Rigorous Computation of Gene and Pathway Scores from SNP-Based Summary Statistics.

    Get PDF
    Integrating single nucleotide polymorphism (SNP) p-values from genome-wide association studies (GWAS) across genes and pathways is a strategy to improve statistical power and gain biological insight. Here, we present Pascal (Pathway scoring algorithm), a powerful tool for computing gene and pathway scores from SNP-phenotype association summary statistics. For gene score computation, we implemented analytic and efficient numerical solutions to calculate test statistics. We examined in particular the sum and the maximum of chi-squared statistics, which measure the strongest and the average association signals per gene, respectively. For pathway scoring, we use a modified Fisher method, which offers not only significant power improvement over more traditional enrichment strategies, but also eliminates the problem of arbitrary threshold selection inherent in any binary membership based pathway enrichment approach. We demonstrate the marked increase in power by analyzing summary statistics from dozens of large meta-studies for various traits. Our extensive testing indicates that our method not only excels in rigorous type I error control, but also results in more biologically meaningful discoveries

    Genome-Wide Association between Transcription Factor Expression and Chromatin Accessibility Reveals Regulators of Chromatin Accessibility.

    Get PDF
    To better understand genome regulation, it is important to uncover the role of transcription factors in the process of chromatin structure establishment and maintenance. Here we present a data-driven approach to systematically characterise transcription factors that are relevant for this process. Our method uses a linear mixed modelling approach to combine datasets of transcription factor binding motif enrichments in open chromatin and gene expression across the same set of cell lines. Applying this approach to the ENCODE dataset, we confirm already known and imply numerous novel transcription factors that play a role in the establishment or maintenance of open chromatin. In particular, our approach rediscovers many factors that have been annotated as pioneer factors

    Atoms and Quantum Dots With a Large Number of Electrons: the Ground State Energy

    Full text link
    We compute the ground state energy of atoms and quantum dots with a large number N of electrons. Both systems are described by a non-relativistic Hamiltonian of electrons in a d-dimensional space. The electrons interact via the Coulomb potential. In the case of atoms (d=3), the electrons are attracted by the nucleus, via the Coulomb potential. In the case of quantum dots (d=2), the electrons are confined by an external potential, whose shape can be varied. We show that the dominant terms of the ground state energy are those given by a semiclassical Hartree-exchange energy, whose N to infinity limit corresponds to Thomas-Fermi theory. This semiclassical Hartree-exchange theory creates oscillations in the ground state energy as a function of N. These oscillations reflect the dynamics of a classical particle moving in the presence of the Thomas-Fermi potential. The dynamics is regular for atoms and some dots, but in general in the case of dots, the motion contains a chaotic component. We compute the correlation effects. They appear at the order N ln N for atoms, in agreement with available data. For dots, they appear at the order N.Comment: 30 pages, 1 figur

    Modified p-modes in penumbral filaments?

    Full text link
    Aims: The primary objective of this study is to search for and identify wave modes within a sunspot penumbra. Methods: Infrared spectropolarimetric time series data are inverted using a model comprising two atmospheric components in each spatial pixel. Fourier phase difference analysis is performed on the line-of-sight velocities retrieved from both components to determine time delays between the velocity signals. In addition, the vertical separation between the signals in the two components is calculated from the Stokes velocity response functions. Results: The inversion yields two atmospheric components, one permeated by a nearly horizontal magnetic field, the other with a less-inclined magnetic field. Time delays between the oscillations in the two components in the frequency range 2.5-4.5 mHz are combined with speeds of atmospheric wave modes to determine wave travel distances. These are compared to expected path lengths obtained from response functions of the observed spectral lines in the different atmospheric components. Fast-mode (i.e., modified p-mode) waves exhibit the best agreement with the observations when propagating toward the sunspot at an angle ~50 degrees to the vertical.Comment: 8 pages, 12 figures, accepted for publication in Astronomy & Astrophysic

    Automated Analysis of Large-Scale NMR Data Generates Metabolomic Signatures and Links Them to Candidate Metabolites.

    Get PDF
    Identification of metabolites in large-scale <sup>1</sup> H NMR data from human biofluids remains challenging due to the complexity of the spectra and their sensitivity to pH and ionic concentrations. In this work, we tested the capacity of three analysis tools to extract metabolite signatures from 968 NMR profiles of human urine samples. Specifically, we studied sets of covarying features derived from principal component analysis (PCA), the iterative signature algorithm (ISA), and averaged correlation profiles (ACP), a new method we devised inspired by the STOCSY approach. We used our previously developed metabomatching method to match the sets generated by these algorithms to NMR spectra of individual metabolites available in public databases. On the basis of the number and quality of the matches, we concluded that ISA and ACP can robustly identify ten and nine metabolites, respectively, half of which were shared, while PCA did not produce any signatures with robust matches

    Tracing groundwater flow and sources of organic carbon in sandstone aquifers using fluorescence properties of dissolved organic matter (DOM)

    Get PDF
    The fluorescence properties of groundwaters from sites in two UK aquifers, the Penrith Sandstone of Cumbria and the Sherwood Sandstone of South Yorkshire, were investigated using excitation-emission matrix (EEM) fluorescence spectroscopy. Both aquifers are regionally important sources of public supply water and are locally impacted by anthropogenic pollution. The Penrith Sandstone site is in a rural setting while the Sherwood Sandstone site is in suburban Doncaster. Fluorescence analysis of samples from discrete sample depths in the Penrith Sandstone shows decreasing fulvic-like intensities with depth and also shows a good correlation with CFC-12, an anthropogenic groundwater tracer. Tryptophan- like fluorescence centres in the depth profile may also provide evidence of rapid routing of relatively recent applications of organic slurry along fractures. Fluorescence analysis of groundwater sampled from multi-level piezometers installed within the Sherwood Sandstone aquifer also shows regions of tryptophan-like and relatively higher fulvic-like signatures. The fluorescence intensity profile in the piezometers shows tryptophan-like peaks at depths in excess of 50 metres and mirrors the pattern exhibited by microbial species and CFCs highlighting the deep and rapid penetration of modern recharge due to rapid fracture flow. Fluorescence analysis has allowed the rapid assessment of different types and relative abundances of dissolved organic matter (DOM), and the fingerprinting of different sources of organic carbon within the groundwater system. The tryptophan:fulvic ratios found in the Penrith Sandstone were found to be between (0.5–3.0) and are characteristic of ratios from sheep waste sources. The Sherwood Sandstone has the lowest ratios (0.2–0.4) indicating a different source of DOM, most likely a mixture of terrestrial and microbial sources, although there is little evidence of pollution from leaking urban sewage systems. Results from these two studies suggest that intrinsic fluorescence may be used as a proxy for, or complimentary tool to, other groundwater investigation methods in helping provide a conceptual model of groundwater flow and identifying different sources of DOM within the groundwater system

    cis-Acting Complex-Trait-Associated lincRNA Expression Correlates with Modulation of Chromosomal Architecture.

    Get PDF
    Intergenic long noncoding RNAs (lincRNAs) are the largest class of transcripts in the human genome. Although many have recently been linked to complex human traits, the underlying mechanisms for most of these transcripts remain undetermined. We investigated the regulatory roles of a high-confidence and reproducible set of 69 trait-relevant lincRNAs (TR-lincRNAs) in human lymphoblastoid cells whose biological relevance is supported by their evolutionary conservation during recent human history and genetic interactions with other trait-associated loci. Their enrichment in enhancer-like chromatin signatures, interactions with nearby trait-relevant protein-coding loci, and preferential location at topologically associated domain (TAD) boundaries provide evidence that TR-lincRNAs likely regulate proximal trait-relevant gene expression in cis by modulating local chromosomal architecture. This is consistent with the positive and significant correlation found between TR-lincRNA abundance and intra-TAD DNA-DNA contacts. Our results provide insights into the molecular mode of action by which TR-lincRNAs contribute to complex human traits
    corecore