112 research outputs found

    Support Vector Regression for Rainfall-Runoff Modeling in Urban Drainage: A Comparison with the EPA's Storm Water Management Model

    Get PDF
    Rainfall-runoff models can be classified into three types: physically based models, conceptual models, and empirical models. In this latter class of models, the catchment is considered as a black box, without any reference to the internal processes that control the transformation of rainfall to runoff. In recent years, some models derived from studies on artificial intelligence have found increasing use. Among these, particular attention should be paid to Support Vector Machines (SVMs). This paper shows a comparative study of rainfall-runoff modeling between a SVM-based approach and the EPA's Storm Water Management Model (SWMM). The SVM is applied in the variant called Support Vector regression (SVR). Two different experimental basins located in the north of Italy have been considered as case studies. Two criteria have been chosen to assess the consistency between the recorded and predicted flow rates: the root-mean square error (RMSE) and the coefficient of determination. The two models showed comparable performance. In particular, both models can properly model the hydrograph shape, the time to peak and the total runoff. The SVR algorithm tends to underestimate the peak discharge, while SWMM tends to overestimate it. SVR shows great potential for applications in the field of urban hydrology, but currently it also has significant limitations regarding the model calibration

    Is there Predictive Power in Hydrological Catchment Information for Regional Landslide Hazard Assessment?

    Get PDF
    AbstractRegional landslide hazard assessment is often carried out by means of empirical meteorological thresholds, which reliability is sometimes limited by the lack of information about the hydrological processes which lead to landslide triggering in slopes. Hence, in this paper the inclusion of hydrological information at catchment scale in the definition of landslide triggering thresholds is applied to a catchment in the northern Apennines (Italy). In particular, an hydro-meteorological threshold based on event precipitation and catchment specific storage (H-S threshold) is proposed. The performance of the proposed threshold is compared with the one of the usually adopted precipitation Intensity-Duration (I-D) threshold. Although most of the landslide recorded in the observed period (2002-2013) were triggered by short and intense precipitation events with little influence of the slope conditions prior the precipitation, the H-Sthreshold performs slightly better than the I-D threshold

    machine learning models for spring discharge forecasting

    Get PDF
    Nowadays, drought phenomena increasingly affect large areas of the globe; therefore, the need for a careful and rational management of water resources is becoming more pressing. Considering that most of the world's unfrozen freshwater reserves are stored in aquifers, the capability of prediction of spring discharges is a crucial issue. An approach based on water balance is often extremely complicated or ineffective. A promising alternative is represented by data-driven approaches. Recently, many hydraulic engineering problems have been addressed by means of advanced models derived from artificial intelligence studies. Three different machine learning algorithms were used for spring discharge forecasting in this comparative study: M5P regression tree, random forest, and support vector regression. The spring of Rasiglia Alzabove, Umbria, Central Italy, was selected as a case study. The machine learning models have proven to be able to provide very encouraging results. M5P provides good short-term predictions of monthly average flow rates (e.g., in predicting average discharge of the spring after 1 month, R2=0.991, RAE=14.97%, if a 4-month input is considered), while RF is able to provide accurate medium-term forecasts (e.g., in forecasting average discharge of the spring after 3 months, R2=0.964, RAE=43.12%, if a 4-month input is considered). As the time of forecasting advances, the models generally provide less accurate predictions. Moreover, the effectiveness of the models significantly depends on the duration of the period considered for input data. This duration should be close to the aquifer response time, approximately estimated by cross-correlation analysis

    Optimal energy recovery by means of pumps as turbines (PATs) for improved WDS management

    Get PDF
    Abstract In water networks characterized by a significant variation in ground elevations the necessity of pumping water in some areas is complicated by a conflicting requirement to reduce excess pressures in other areas. This and the increasing cost of electricity has led to the use of Pumps-operating-As-Turbines (PATs) devices that can reduce pressure (and leakage) whilst harvesting energy. This paper presents a methodology for optimal water distribution system (WDS) management, driving the optimization by minimizing the surplus pressure at network nodes and the operational pumping costs and maximizing the income generated through energy recovery. The method is based on a highly parallelized Evolutionary Algorithm, employing an hydraulic solver to evaluate hydraulic constraints. Water demands at network nodes are considered as uncertain variables modelled by using a probabilistic approach in order to take into account unknown future demands. The approach is demonstrated in different case studies. Results obtained highlight that the economic benefits of installing PATs for energy recovery in conjunction with a combined pump-scheduling and pressure management regime is especially related to the input network characteristics. Further analysis of the importance of the probabilistic approach and of the influence of the interval time step adopted for the optimization has been evaluated

    Fermi Large Area Telescope Constraints on the Gamma-ray Opacity of the Universe

    Get PDF
    The Extragalactic Background Light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above ~10 GeV during propagation from sources at cosmological distances. This results in a redshift- and energy-dependent attenuation of the gamma-ray flux of extragalactic sources such as blazars and Gamma-Ray Bursts (GRBs). The Large Area Telescope onboard Fermi detects a sample of gamma-ray blazars with redshift up to z~3, and GRBs with redshift up to z~4.3. Using photons above 10 GeV collected by Fermi over more than one year of observations for these sources, we investigate the effect of gamma-ray flux attenuation by the EBL. We place upper limits on the gamma-ray opacity of the Universe at various energies and redshifts, and compare this with predictions from well-known EBL models. We find that an EBL intensity in the optical-ultraviolet wavelengths as great as predicted by the "baseline" model of Stecker et al. (2006) can be ruled out with high confidence.Comment: 42 pages, 12 figures, accepted version (24 Aug.2010) for publication in ApJ; Contact authors: A. Bouvier, A. Chen, S. Raino, S. Razzaque, A. Reimer, L.C. Reye

    L'affidabilita' dei sistemi di distribuzione idrica in relazione alle diverse cause di disservizio

    No full text
    Dottorato di ricerca in ingegneria idraulica. 10. ciclo. Coordinatore G. Pulci Doria. Tutore V. BiggieroConsiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome; Biblioteca Nazionale Centrale - P.za Cavalleggeri, 1, Florence / CNR - Consiglio Nazionale delle RichercheSIGLEITItal
    • …
    corecore