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Nowadays, drought phenomena increasingly affect large areas of the globe; therefore, the need for a careful and rational
management of water resources is becoming more pressing. Considering that most of the world’s unfrozen freshwater reserves
are stored in aquifers, the capability of prediction of spring discharges is a crucial issue. An approach based on water balance is
often extremely complicated or ineffective. A promising alternative is represented by data-driven approaches. Recently, many
hydraulic engineering problems have been addressed by means of advanced models derived from artificial intelligence studies.
Three different machine learning algorithms were used for spring discharge forecasting in this comparative study: M5P
regression tree, random forest, and support vector regression. The spring of Rasiglia Alzabove, Umbria, Central Italy, was
selected as a case study. The machine learning models have proven to be able to provide very encouraging results. M5P provides
good short-term predictions of monthly average flow rates (e.g., in predicting average discharge of the spring after 1 month,
R?>=0.991, RAE = 14.97%, if a 4-month input is considered), while RF is able to provide accurate medium-term forecasts
(e.g., in forecasting average discharge of the spring after 3 months, R*=0.964, RAE=43.12%, if a 4-month input is
considered). As the time of forecasting advances, the models generally provide less accurate predictions. Moreover, the
effectiveness of the models significantly depends on the duration of the period considered for input data. This duration

should be close to the aquifer response time, approximately estimated by cross-correlation analysis.

1. Introduction

In recent years, long and frequent droughts have affected
many countries in the world. These events require an ever
more careful and rational management of water resources.
Most of the globe’s unfrozen freshwater reserves are stored
in aquifers. Groundwater is generally a renewable resource
that shows good quality and resilience to fluctuations. Thus,
if properly managed, groundwater could ensure long-term
supply in order to meet increasing water demand.

For this purpose, it is of crucial importance to be able to
predict the flow rates provided by springs. These represent
the transitions from groundwater to surface water and reflect
the dynamics of the aquifer, with the whole flow system
behind. Moreover, spring influences water bodies into which
they discharge. The importance of springs in groundwater
research is highlighted in some significant contributions
[1, 2]. In-depth studies on springs started only after the

concept of sustainability was introduced in the manage-
ment of water resources [3].

A spring hydrograph is the consequence of several
processes governing the transformation of precipitation in
the spring recharge area into the single output discharge at
the spring. A water balance states that the change rate in
water stored in the feeding aquifer is balanced by the rate at
which water flows into and out of the aquifer. A quantitative
water balance generally has to take the following terms into
account: precipitation, infiltration, surface runoff, evapo-
transpiration, groundwater recharge, soil moisture deficit,
spring discharge, lateral inflow to the aquifer, leakage between
the aquifer and the underlying aquitard, well pumpage from
the aquifer, and change of the storage in the aquifer.

In many cases, the evaluation of the terms of the water
balance is very complicated. The complexity of the problem
arises from many factors: hydrologic, hydrographic, and
hydrogeological features, geologic and geomorphologic
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characteristics, land use, land cover, water withdrawals, and
climatic conditions.

Even more complicated would be to estimate future
spring discharges by using a model based on the balance
equations. Therefore, simplified approaches are frequently
pursued for practical purposes.

Many authors have addressed the problem of correlating
the spring discharges to the rainfall through different
approaches. Zhang et al. [4] used a lumped-parameter model
and least-squares method to simulate temporal variations of
discharge from a limestone aquifer in Iowa, USA. Lambrakis
et al. [5] applied nonlinear time series analysis and artificial
neural network to the study of the regime and the possi-
bility of short-term forecasting of the discharges of the
karstic spring of Almyros in Iraklion, Greece. Hu et al.
[6] developed a model for simulating spring discharges
using ANN and applied the model to Niangziguan
Springs, China. Fiorillo and Doglioni [7] presented a study
on the relation between rainfall and the discharge from two
karst springs in Southern Italy based on cross-correlation
analyses. Fan et al. [8] proposed an assembled extreme value
statistical model to investigate spring discharge depletion
processes under extreme climate change and intense ground-
water development. Diodato et al. [9] proposed a lumped
climatological model for spring discharge estimation in
which groundwater is represented by a single reservoir and
spring discharge is described by a single valued function of
storage in the reservoir.

Recently, many researchers have investigated the feasibil-
ity of addressing hydraulic engineering issues by means of
advanced models derived from artificial intelligence studies.
Regression Tree models, Ensemble methods, and support
vector machines have been increasingly used in solving water
engineering problems.

Dibike et al. [10] compared support vector machines
(SVMs) and artificial neural networks (ANNSs) in rainfall-
runoff modelling. Ahmad et al. [11] employed SVMs to
estimate soil moisture on the base of remote sensing data.
Raghavendra and Deka [12] provided an extensive review
of the SVM applications to hydrology problems. Granata
et al. [13] carried out a comparative study between support
vector regression (SVR) and Stormwater Management
Model in the rainfall-runoff modelling in urban drainage.
Najafzadeh et al. [14] used SVM and ANFIS for scour predic-
tion in long contractions in waterways. Granata et al. [15]
applied SVR and regression trees in order to predict wastewa-
ter quality indicators.

Tree models or ensemble methods were implemented to
forecast flood events [16], to foresee mean annual flood
[17], to predict scour depth due to waves [18], to evaluate
sediment yield in rivers [19], to predict maximum scour
depth around piers [20], to address wastewater hydraulics
issues [21], to forecast local scour depth downstream of sluice
gates [22], to evaluate sediment transport [23], and to evalu-
ate the flow discharge in main channels and floodplains [24].

The aim of this study is to assess the ability of a machine-
learning algorithm-based approach in predicting average
monthly discharge of a spring, when the forecast horizon
does not exceed a few months, if few years of monthly flow
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rate measurements and rainfall data are available. Therefore,
regression tree, random forest, and support vector regression
were used to build forecasting models and to perform a com-
parative study. The proposed approach was tested by means
of experimental data obtained from the spring of Rasiglia
Alzabove, Umbria, Central Italy. Time series data are
available from the Regional Agency for Environmental
Protection (http://www.arpa.umbria.it). Future monthly
average discharges were correlated to the average discharges
of the past months and to the cumulative rainfall of the
same months.

2. Materials and Methods

2.1. Machine Learning Models: Regression Trees. A regression
tree (RT) model (Figure 1) develops a decision tree in order
to make predictions [25]. The target variables take real
values. In a regression tree, each internal node represents
one of the input variables, whereas each leaf corresponds to
an assigned value of the target variable and a root node con-
tains all data.

During the growth of a regression tree model, the input
data domain is recursively divided into subdomains. The pre-
dictions are made in each of them by means of multivariable
linear regression models. At the first step of the iterative algo-
rithm, all data are allocated into two branches, considering all
the possible split on every field. Subsequently, the develop-
ment process of the regression tree continues by splitting
each branch into smaller partitions, as the system expands.
At each stage, the procedure identifies the subdivision in
two distinct partitions that minimize the sum of the squared
deviations from the mean. This sum can be considered a
measure of the “impurity” at a node that is a quantification
of the predictive capability of the node. The algorithm con-
tinues until the lowest impurity level is obtained or until a
stopping rule is met. Usually, a stopping rule is related to
the threshold for the minimum impurity variation provided
by new splits, the minimum number of units in each node,
or the maximum tree depth.

The algorithm here used is commonly known as M5P
and is based on Quinlan’s M5 algorithm [26]. The impurity
of each node is estimated by the least-squared deviation
(LSD), R(t), defined as

R()= 5 204~ o

i€t

in which N(t) is the number of sample units in node ¢, y, is
the value of the target variable for the i —th unit, and y, is
the mean of the target variable in node .

The split process at each node is carried out based on the
following function of the LSD:

¢ (s 1) = R(t) = pLR(ty) — prR(tR), (2)

in which f; and fy are the left and right nodes generated by
the split s,, while p; and py, are the portions allocated in the
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FiGure 1: Typical architecture of a simple regression tree. LMs:
linear models.

left and right child node. Finally, the subdivision s, that
s, t) is adopted.

A regression tree might suffer from overfitting when the
model structure is fully developed. Overfitting occurs when
a machine learning model has become too attuned to the data
on which it was trained and therefore loses its applicability to
any other dataset. Therefore, overfitting reduces the tree
ability to make predictions, when the model is applied to
novel data. To minimize this risk, a pruning process is
generally carried out to reduce the size of the regression tree
by removing the splits that do not bring significant improve-
ments to the forecasting capability. Overfitting could also be
prevented by extending the training dataset.

maximizes the value of ¢ (

2.2. Random Forest. If the results of different regression trees
are combined into a single prediction, an ensemble method is
obtained. The simplest combination is a weighted average.

A random forest (RF) [27] is obtained by an ensemble of
uncorrelated, simple regression trees (Figure 2). Each tree is
built using a different bootstrap sample of the data, and each
new training set is attained, with replacement, from the
original training set. In addition, random forests differ in
how the regression trees are built. In a standard tree, each
node is divided by referring to the best split among all
variables. A random forest, instead, is built by randomly
choosing, at each node, a small group of input variables to
split on. If the input variables are M, a number m < M is
identified such that at each node, m variables are randomly
selected out of M and the best split on these m is used to
subdivide the node. The value of m is kept constant during
the expansion of the forest. Each tree is expanded as far as
possible. No pruning is carried out.

The forest error rate is affected by two factors: the
correlation between any two trees and the strength of each
single tree. The forest error rate rises if the correlation
increases. Moreover, the forest error rate decreases if the
strength of the individual trees increases. If m is reduced,
both the strength and the correlation decrease.

2.3. Support Vector Regression. Different is the approach of
support vector machine algorithms [28]. They are supervised
learning models that analyse data for classification or regres-
sion analysis [29]. If { (x1, ¥, ), (X, ¥5)> ... » (x5, ¥,)} € X x Ris
a training dataset, where X is the space of the input patterns
(e.g., X =R"), support vector regression (SVR) is aimed at
identifying a function f(x) that has a maximum & deviation
from the experimental target values y, for all the training

data. Smaller than € errors can be tolerated, while the greater
than & errors are generally unacceptable (Figure 3). In
addition, f(x) should be as flat as possible.

Therefore, given a linear function in the form

flx)=(w

in which we X, beR, and (., .) is the dot product in X, the
Euclidean norm |wl||* has to be minimized, respecting the
maximum deviation constraint. This condition leads to a
convex optimization problem. However, in many cases, a
certain error has to be tolerated. Therefore, slack variables
&), & have to be introduced in the constraints of the optimi-
zation problem that can be formulated as

x)+b, (3)

Minimize

1 ’ .
Sl +CY (),
i=1

—(w,x)-b<e+],
Subject to =i i J
(w,x) +b-y; <e+&,

The constant C > 0 affects both the flatness of f and the
accepted deviations.

The optimization problem stated in (4) is generally
solved in its dual formulation, by means of Lagrange
multipliers:

l !
= el + CY(E+E) - Ya(e by + wx) +b)

MN

xi> - b) (’115 + 1; E )

(5)

- Z(x;“(s+£;‘ +y;,—(w

i=1

Il
—_

in which o, &, 7,717 > 0.

The part1a1 derivatives of L with respect to the variables
(w, b,&,&") must be equal to zero in correspondence with
the optimal condition. It follows that the optimization
problem in dual form can be stated as

N\P—‘

Zl_: o — o (oc - )<x,,x>

Maximize (6)

—ega+a Zy,(a—a)

Subject to P 4 (7)
a;a; €[0,CJ.

The evaluation of b is obtained imposing the Karush-
Kuhn-Tucker conditions [30], according to which the prod-
uct between constraints and dual variables must be equal to
zero at the optimal condition.
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FIGURE 2: Regression tree ensemble: a typical random forest.

Error

F1GURE 3: Example of support vector regression: smaller than ¢ errors are not relevant, while larger deviations are penalized in a linear fashion.

“Loss” is the penalty for larger than e deviations.

In order to make the SVR algorithm nonlinear, the
training patterns x; may be preliminarily processed by a
function ®: X — F, where F is some feature space. The
SVR algorithm only depends on the dot products between
the different patterns; therefore, it is possible to use a kernel
k(x;,x;) = (@(x;), @(x;)) instead of specifically using the
map O(-) (Figure 4).

It follows that condition (6) in the optimization problem
can be replaced by

—3 Z (o = “i*)(“j - “;)k(xi’xj)’

Maximize (8)

while constraints expressed by (7) remain unchanged.

In the nonlinear case, the optimization problem requires
finding the flattest function in the feature space, not in the
input space. The expansion of f can be formulated as

M-

Il
—

fx)= 2 (@i = ai)k(x;, x) +b. ©)

In this research, a radial basis function (RBF) was selected
as kernel. The RBF has the form

k(x;,x;) = exp (—nyi—xsz), y>0. (10)

In particular, in the case study, the parameters assume
the following values: C =1, ¢ =0.001, and y = 0.01.

The described algorithms were implemented in a specific
code written in MATLAB language. The search for the opti-
mal structure of the models was conducted by means of a
trial-and-error iteration procedure. The holdout method
was used in the cross-validation process during training. It
involves removing a part of the training data and using it to
get predictions from the model trained on the rest of the data.
The estimation error tells how the model is doing on unseen
data or the validation set.

2.4. Case Study. The Menotre River Valley, in correspon-
dence of the Rasiglia town (Umbria Region), is characterized
by the Capo Vena spring (elevation of 670m as.l. and
average discharge of 7001/s), Alzabove spring (elevation of
650m a.s.l. and average discharge of 2501/s), and the minor
spring of Verchiano Aqueduct (elevation of 650 m a.s.l. and
average discharge of 451/s) [31]. The Alzabove spring,
partially collected by the Sella Valle Umbra Sud aqueduct
(derived water discharge 1251/s), represents an ideal site for
the application of the proposed methodology, due to the
available discharge time series and the favorable hydrogeolo-
gical setting.

Carbonate deposits of the Umbria-Marche sequence
characterize the area [31]. The stratigraphic and tectonic
setting influences the groundwater circulation and the
emergence point of the Alzabove spring. In wider terms,
the Umbria-Marche series can be divided in three hydrogeo-
logical complexes consisting in the Corniola and Calcare
Massiccio basal complex, the Maiolica complex, and the
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FIGURE 4: Typical architecture of the nonlinear SVR algorithm.

Scaglia Calcarea complex. These hydrogeological complexes
with high permeability and high storing capacity constitute
the main regional aquifers.

The complexes of “Marne del Sentino-Rosso
Ammonitico-Marne ad Aptici Fm.,” “Marne a Fucoidi,”
and “Scaglia Cinerea-Marnoso Arenacea” have an aquitard
function and divide the groundwater circulation of the
calcareous complexes. Groundwater of the Alzabove spring
takes origin from the contact between Maiolica Fm. (lower
Cretaceous) and Marne a Fucoidi Fm. (middle Cretaceous),
via a contact of 500 m length, along the right side of Menotre
River (Figure 5(a)). The contact between Maiolica Fm. and
Marne a Fucoidi Fm. is located along the western limb of
the Toricello Mt. anticlinal (Figures 5(a) and 5(b)) belonging
to a large fold system. The anticline fold consists in layers of
the Maiolica Fm. and constitutes the natural reservoir which
feeds the Alzabove spring. Marne a Fucoidi Fm. represents
the permeability limit of the aquifer [31-33] (Figures 5(a)
and 5(b)).

In this context, the Alzabove spring can be considered an
overflow spring (Figure 5(b)), collected via a trench drain,
located along the Toricello Mt. and at the contact between
Maiolica Fm. and Marne a Fucoidi Fm. From a geochemical
point of view, the Alzabove spring is a bicarbonate-calcium
water with a TDS of 300 mg/1, a Mg/Ca ratio of 0.12, and iso-
topic values of 934S equal to +7.5%o. Values are different
from the water of the Capo Vena spring that has
bicarbonate-sulphate-calcium characteristics with a TDS of
500mg/l, Mg/Ca ratio of 0.25, and isotope value of 934S
equal to +13%o [33].

The chemical analysis proves that the Alzabove spring is
characterized by low contents of Mg, typical of Maiolica Fm.
On the contrary, groundwater circulation of the Capo Vena
spring is affected by dolomitic horizons with sulphates.
Therefore, the groundwater path of the Alzabove spring is
shallower and less influenced by karst phenomena and
tectonics, if compared with the Capo Vena reservoir which
comprehends the basal portion of the Umbria-Marche
sequence (lower Lias).

The identification of the hydrogeological model of the
Alzabove spring confirms that it constitutes a useful case
for the proposed algorithm training.

2.5. Effectiveness of the Models. The effectiveness of forecast-
ing algorithms was evaluated by the following criteria: the

coefficient of determination R?, the mean absolute error
(MAE), the root mean squared error (RMSE), and the
relative absolute error (RAE).

The coefficient of determination, R?, is a measure of the
accuracy of the model, because it assesses how well the model
replicates observed outcomes and how well it predicts future
outcomes. R? is defined as

R2=<1—

where m is the total number of observed data, f; is the pre-
dicted value for data point , y; is the measured value for data
point i, and y, is the averaged value of the experimental data.
The mean absolute error measures how much the predic-
tions are close to the observed values. It is evaluated by

221|fi_yi|' (12)

Zim—l(fi_yif), (11)
X0y

MAE =

RMSE is the sample standard deviation of the differences
between experimental and predicted values. It is given by

RMSE = 72’21({;_”)2. (13)

Finally, RAE normalizes the total absolute error dividing
it by the total absolute error of the simple predictor. Its
definition is

RAE = Z:z1|fi_yi| (14)

il V=il '
3. Results and Discussion

The input data of the different models are the past monthly
average flow rates, Q_;, Q_,,...,Q_, and the cumulative
monthly rainfall on the aquifer basin, P_;,P_,,...,P_. A
time series of 60 months (Figure 6) was used in the calcula-
tions; 80% of the available data was used for the algorithm
training. The proposed approach is effective even with data
from a single rain gauge; thus, rainfall data were taken from
the Norcia rain gauge (Figure 5(c)). They optimally represent
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F1GURE 5: Geological and hydrogeological map (a), section of the Alzabove spring area (b), and rain gauge location (c). Key to the legend: (1)
the talus and alluvial deposit complex (Olocene-Pleistocene) has high permeability which constitutes the local aquifer; (2) the lacustrine
deposit complex (Olocene-Pliocene) has an aquitard function; (3) terrigenous complexes (marls, scaly clays, and sandstones) (Miocene)
have an aquitard function; (4) the Scaglia calcarea complex (Scaglia Rossa and Scaglia Bianca Fm.) (Eocene-Cretaceous) has high
permeability and high storing capacity which constitute the regional aquifer; (5) the Marne a fucoidi complex (Lower Cretaceous) has an
aquitard function; (6) Maiolica complex (Lower Cretaceous-Jurassic) has high permeability and high storing capacity which constitute the
regional aquifer; (7) the calcareous siliceous marly complex (Marne del Sentino-Rosso Ammonitico-Marne ad Aptici Fm.) (Upper
Jurassic) has an aquitard function; (8) the Corniola-Calcare Massiccio basal complex (Lower Jurassic) has high permeability and high
storing capacity which constitute the regional aquifer; (9) fault; (10) folds: (a) anticline and (b) syncline; (11) thrust; (12) springs: (a) Capo
Vena, (b) Verchiano, and (c) Alzabove; (13) groundwater level: the numbers indicate the water above sea level; (14) river; (15) section
trace; (16) village.

the cumulative rainfall on the basin. In addition, preliminary =~ models when a few years of experimental observations

analyses showed that data from Norcia pluviometry are char-  are available.

acterized by the highest values of cross-correlation with the In Figure 7 the cross-correlation between cumulative
flow rates of the Alzabove springs with respect to the other =~ monthly rainfall and average monthly discharge is reported.
rain gauges located in the recharge basin. Obviously, the positive values of the lag have no real interest.

The available time series is not very long, but this is ~ The analysis of the cross-correlogram shows that the cross-
not a limitation as one of the primary objectives of this study ~ correlation takes a maximum value for a lag value of about
is to evaluate the predictive capabilities of the considered = 4 months. The hydrogeological characteristics of several
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FIGURE 7: Cross-correlogram of cumulative monthly rainfall and
average monthly discharge.

aquifers in Central Italy would suggest a higher lag.
Therefore, data on the previous 4, 6, and 8 months were
alternatively considered, in order to assess the influence of
the input period duration on the model’s response.
Preliminary analysis showed that better results are
obtained if the input vector has the same number of flow rate
and cumulative rainfall data. Thus, each vector of the input
matrix to the three different models is composed as follows:

[Q., Q. ...,Q P, Py, ..., Py, (15)
where k=4, 6, 8.

Different models were built to predict the monthly
average discharge of the spring after 1 month, Q,,, and the
average discharge after 2 months, Q,,, after 3 months, Q,;,
and after 4 months, Q,,.

Table 1 and Figures 8-19 show a comparison of the
results provided by the different models.

With regard to the average discharge of the following
month, Q, , all models show adequate predictive capabilities
(Table 1) when the input data takes into account the previous

TaBLE 1: Comparative analysis of M5P, RF, and SVR by means of
R?, MAE, RMSE, and RAE.

Mod m MAETRVSE
Q+1
M5P 0991 0.0124 0.0156 14.97%
4-month input RF 0.926  0.0309  0.0446 37.29%
SVR 0.97  0.0196  0.0299 23.67%
MS5P 0.987  0.013 0.018 15.67%
6-month input RF 0.963  0.0261 0.035 31.50%
SVR 0976 0.0191  0.0291 22.97%
M5P 0.889  0.0214  0.0312 41.24%
8-month input RF 0.823  0.0297  0.0377 57.26%
SVR 0.86  0.0275 0.0348 52.96%
Q+2
M5P 0962 0.0272  0.0309 32.50%
4-month input RF 0.972  0.0322  0.0391 38.53%
SVR 0.933 0.03 0.0402 3591%
M5P 0.976  0.0207 0.026 24.73%
6-month input RF 0.972  0.0333  0.0389 39.81%
SVR 0.95 0.028 0.0369 33.55%
M5P 0.675 0.0484  0.0623 75.87%
8-month input RF 0.834 0.0398  0.0491 62.24%
SVR 0.84 0.0381 0.0489 59.61%
Q+3
M5P 0.859 0.0487  0.0544 56.43%
4-month input RF 0.964 0.0373  0.0435 43.12%
SVR 0.791  0.0507  0.0637 58.69%
M5P 0921 0.0349  0.0405 40.40%
6-month input RF 096  0.0388  0.0475 44.88%
SVR 0.838 0.0464  0.0589 53.65%
M5P 0.586  0.048 0.0591 84.85%
8-month input RF 0.855 0.0409  0.0496 72.37%
SVR 0.389 0.0638 0.0682  112.87%
Q+4
MS5P 0.755 0.0544 0.0612 71.83%
4-month input RF 0.936  0.0359  0.0393 47.41%
SVR 0.731  0.0528  0.0621 69.83%
M5P 0.831  0.0449 0.051 59.39%
6-month input RF 0945 0.0373  0.0441 49.25%
SVR 0.857  0.0415 0.05 54.88%
M5P 0.709  0.0379  0.0475 70.49%
8-month input RF 0.934 0.0277  0.0351 51.44%
SVR 0.797 0.0314  0.0406 58.39%

4 months (Figure 8) or the previous 6 months (Figure 9). In
these cases, the M5P algorithm, followed by the SVR
algorithm, provides the best results. The RF algorithm leads
to not fully satisfactory results, particularly for an input
based on the previous 4 months, for which RAE = 37.29%.
MS5P provides slightly better results with an input based
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F1GURE 10: Comparison between predicted and observed discharges (m?/s), 8-month input.

on the previous 4 months (R*=0.991, MAE =0.0124m>/s, ~ RF provides the least satisfactory ones (R* =0.823, MAE =
RMSE = 0.0156 m*/s, and RAE =14.97%), while SVR per-  0.0297 m?/s, RMSE = 0.0377 m’/s, and RAE = 57.26%).

formance is slightly better if an input based on the previous Regarding the forecast of the average flow rate after
6 months is considered (R>=0.976, MAE =0.0191 m?/s, two months, Q,,, all models lead to reliable results
RMSE =0.0291 m®/s, and RAE =22.97%). If, on the other (Table 1), both with 4-month input (Figure 11) and 6-
hand, 8-month input is considered, the results of all models =~ month input (Figure 12). M5P and RF show the best perfor-
(Figure 10) get significantly worse (Table 1). Again, in this ~ mance in terms of coefficient of determination R?, but RF
case M5P leads to the best results (R*=0.889, MAE = predictions are characterized by higher values of MAE,
0.0214 m®/s, RMSE = 0.0312 m*/s, and RAE = 41.24%) while =~ RMSE, and RAE. The best predictions of Q,, are provided
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FIGURE 13: Comparison between predicted and observed discharges (m?/s), 8-month input.
by M5P with a 6-month input (R* =0.976, MAE = 0.0207 Analyzing the average flow rate after 3 months, Q,,,

m?/s, RMSE = 0.026 m*/s, and RAE = 24.73%).

referring to a 4-month input (Figure 14), it can be seen that

Considering an 8-month input (Figure 13), it can be ~ RF provides the best results in terms of both R* and
noted that the performance of all models significantly =~ MAE, RMSE, and RAE, while M5P provides less accurate
declines (Table 1). M5P is characterized by the lowest R? predictions and SVR leads to the worse results (Table 1).

and the highest errors, while performance of SVR and
which are very similar, is much better than that of M5P.

All models show the most significant errors
Q>0.35m’/s.

RF, Considering instead a 6-month input (Figure 15), the
accuracy of M5P improves significantly, with R* increasing
for  from 0.859 to 0.921 and MAE decreasing from 0.0487 m*/s to
0.0349m’/s, RMSE from 0.0544m’/s to 0.0405m’/s, and
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F1GURE 16: Comparison between predicted and observed discharges (m?/s), 8-month input.
RAE from 56.43% to 40.40%. RF performance indices If, on the other hand, an 8-month input is considered

remain almost unchanged; therefore, RF continues to be  (Figure 16), once again the performance of forecast models
characterized by the higher value of R*, while error values  significantly declines (Table 1). Only the RF algorithm is
are now higher than those of M5P. SVR provides less  characterized by a fairly high value of R?, equal to 0.855,
accurate predictions either with a 4-month input or with a  while SVR provided results affected by excessive errors.

6-month input. In the first case, R?>=0.791, MAE = 0.0507 Again, all the models show the most significant errors for
m?/s, RMSE = 0.0637 m?®/s, and RAE = 58.69%; in the second Q>0.35m’/s.
case, R*=0.838, MAE =0.0464 m?/s, RMSE = 0.0589 m?/s, With regard to the average discharge after 4 months, Q,,

and RAE =53.65%: even the accuracy of SVR predictions  the algorithm RF-based model provides the most accurate
improves by switching from 4-month input to 6-month input. ~ predictions for all input durations considered (Table 1).
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FIGURE 19: Comparison between predicted and observed discharges (m?/s), 8-month input.

Considering a 4-month input (Figure 17), RF is characterized
by R*=0.936, MAE=0.0359 m?/s, RMSE =0.0393m?s,
and RAE=47.41%. For a 6-month input (Figure 18),
instead, R*=0.945, MAE=0.0373m’/s, RMSE = 0.0441
m?/s, and RAE =49.25%: the performance of the model
with two different inputs are very close. Better than expected
is the RF performance for an 8-month input: R* = 0.934, M
AE =0.0277 m*/s, RMSE = 0.0351 m*/s, and RAE = 51.44%.
Both in the case of 4-month input and 6-month input are
performances of M5P and SVR very similar. With reference

to the 8-month input (Figure 19), however, SVR provides
more accurate predictions than M5P (Table 1).

The error of the models is fairly evenly distributed over
the entire flow rate range considered for testing.

It can also be noted that as the forecasting horizon
advances, the M5P model provides less accurate predic-
tions. Similar is the behavior of SVR. The accuracy of
the RF model, instead, is less reduced as the monthly
timeframe advances. While M5P provides very good short-
term forecasts, RF is able to provide fairly accurate
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predictions of average flow rates that will be available
after some months.

All the considered models tend to be less effective if the
input data relate to an appreciably longer period than the
actual aquifer response to rainfall on the basin; therefore, it
is appropriate to estimate this time by means of a cross-
correlation analysis.

4. Conclusions

The capability of forecasting spring discharges is essential for
a careful management and an accurate planning of water
resources. In many cases, a prediction of the flow rate that
will be available in the future on the basis of the basin water
balance is very complicated or impossible. Machine learning
models represent a very interesting alternative. These models
can be built on the basis only of past discharges and cumula-
tive rainfall.

Three different machine learning algorithms were used
and compared in this study: M5P, random forest, and
support vector regression. The spring of Rasiglia Alzabove,
Umbria, Central Italy, was chosen as a case study.

The considered models have proven to be able to provide
encouraging results even if the available time series for
training is rather limited. M5P provides very good short-
term predictions of monthly average flow rates, while RF is
able to provide accurate medium-term forecasts.

As the time of forecasting advances, the models generally
lead to less accurate predictions. Moreover, the effectiveness
of the models significantly depends on the duration of the
period considered for input data. This time should be
approximately estimated by means of a cross-correlation
analysis, in order to evaluate the actual aquifer response time.

Notations

b:  Bias in SVR algorithm

C:  Cost of error in SVR algorithm

N: Number of sample units in the generic node

P_,: Cumulative monthly rainfall of k months before
pi:  Portion of units assigned to the left child node

pr: Portion of units assigned to the right child node
Q,;: Predicted monthly average flow rate after k months
Q_;: Monthly average flow rate of k months before

R: Least-squared deviation, within variance for the
generic node

Generic split during tree model growing

Generic node of a tree model

t;:  Left node generated by the generic split s,

tg:  Right node generated by split s,

w:  Variable in SVR algorithm

y;:  Value of the target variable for the i-th unit in the
generic node

Mean value of the target variable in the generic node
Function used to make the SVR algorithm nonlinear
a;  Variable in SVR algorithm

a;":  Variable in SVR algorithm

& Deviation parameter in SVR algorithm

¢:  Function of the least-squared deviation

Geofluids

n;:  Variable in SVR algorithm

"+ Variable in SVR algorithm

&;: Slack variable in SVR algorithm
[+ Slack variable in SVR algorithm.
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