925 research outputs found
A Blind Search for Magnetospheric Emissions from Planetary Companions to Nearby Solar-type Stars
This paper reports a blind search for magnetospheric emissions from planets
around nearby stars. Young stars are likely to have much stronger stellar winds
than the Sun, and because planetary magnetospheric emissions are powered by
stellar winds, stronger stellar winds may enhance the radio luminosity of any
orbiting planets. Using various stellar catalogs, we selected nearby stars (<~
30 pc) with relatively young age estimates (< 3 Gyr). We constructed different
samples from the stellar catalogs, finding between 100 and several hundred
stars. We stacked images from the 74-MHz (4-m wavelength) VLA Low-frequency Sky
Survey (VLSS), obtaining 3\sigma limits on planetary emission in the stacked
images of between 10 and 33 mJy. These flux density limits correspond to
average planetary luminosities less than 5--10 x 10^{23} erg/s. Using recent
models for the scaling of stellar wind velocity, density, and magnetic field
with stellar age, we estimate scaling factors for the strength of stellar
winds, relative to the Sun, in our samples. The typical kinetic energy carried
by the stellar winds in our samples is 15--50 times larger than that of the
Sun, and the typical magnetic energy is 5--10 times larger. If we assume that
every star is orbited by a Jupiter-like planet with a luminosity larger than
that of the Jovian decametric radiation by the above factors, our limits on
planetary luminosities from the stacking analysis are likely to be a factor of
10--100 above what would be required to detect the planets in a statistical
sense. Similar statistical analyses with observations by future instruments,
such as the Low Frequency Array (LOFAR) and the Long Wavelength Array (LWA),
offer the promise of improvements by factors of 10--100.Comment: 11 pages; AASTeX; accepted for publication in A
LOFAR tied-array imaging of Type III solar radio bursts
Context. The Sun is an active source of radio emission which is often associated with energetic phenomena such as solar flares and coronal mass ejections (CMEs). At low radio frequencies (< 100 MHz), the Sun has not been imaged extensively because of
LOFAR observations of the quiet solar corona
The quiet solar corona emits meter-wave thermal bremsstrahlung. Coronal radio
emission can only propagate above that radius, , where the local
plasma frequency eqals the observing frequency. The radio interferometer LOw
Frequency ARray (LOFAR) observes in its low band (10 -- 90 MHz) solar radio
emission originating from the middle and upper corona. We present the first
solar aperture synthesis imaging observations in the low band of LOFAR in 12
frequencies each separated by 5 MHz. From each of these radio maps we infer
, and a scale height temperature, . These results can be combined
into coronal density and temperature profiles. We derived radial intensity
profiles from the radio images. We focus on polar directions with simpler,
radial magnetic field structure. Intensity profiles were modeled by ray-tracing
simulations, following wave paths through the refractive solar corona, and
including free-free emission and absorption. We fitted model profiles to
observations with and as fitting parameters. In the low corona,
solar radii, we find high scale height temperatures up to
2.2e6 K, much more than the brightness temperatures usually found there. But if
all values are combined into a density profile, this profile can be
fitted by a hydrostatic model with the same temperature, thereby confirming
this with two independent methods. The density profile deviates from the
hydrostatic model above 1.5 solar radii, indicating the transition into the
solar wind. These results demonstrate what information can be gleaned from
solar low-frequency radio images. The scale height temperatures we find are not
only higher than brightness temperatures, but also than temperatures derived
from coronograph or EUV data. Future observations will provide continuous
frequency coverage, eliminating the need for local hydrostatic density models
Motor neuronopathy with dropped hands and downbeat nystagmus: A distinctive disorder? A case report
BACKGROUND: Eye movements are clinically normal in most patients with motor neuron disorders until late in the disease course. Rare patients are reported to show slow vertical saccades, impaired smooth pursuit, and gaze-evoked nystagmus. We report clinical and oculomotor findings in three patients with motor neuronopathy and downbeat nystagmus, a classic sign of vestibulocerebellar disease. CASE PRESENTATION: All patients had clinical and electrodiagnostic features of anterior horn cell disease. Involvement of finger and wrist extensors predominated, causing finger and wrist drop. Bulbar or respiratory dysfunction did not occur. All three had clinically evident downbeat nystagmus worse on lateral and downgaze, confirmed on eye movement recordings using the magnetic search coil technique in two patients. Additional oculomotor findings included alternating skew deviation and intermittent horizontal saccadic oscillations, in one patient each. One patient had mild cerebellar atrophy, while the other two had no cerebellar or brainstem abnormality on neuroimaging. The disorder is slowly progressive, with survival up to 30 years from the time of onset. CONCLUSION: The combination of motor neuronopathy, characterized by early and prominent wrist and finger extensor weakness, and downbeat nystagmus with or without other cerebellar eye movement abnormalities may represent a novel motor neuron syndrome
Multi-phonon Raman scattering in semiconductor nanocrystals: importance of non-adiabatic transitions
Multi-phonon Raman scattering in semiconductor nanocrystals is treated taking
into account both adiabatic and non-adiabatic phonon-assisted optical
transitions. Because phonons of various symmetries are involved in scattering
processes, there is a considerable enhancement of intensities of multi-phonon
peaks in nanocrystal Raman spectra. Cases of strong and weak band mixing are
considered in detail. In the first case, fundamental scattering takes place via
internal electron-hole states and is participated by s- and d-phonons, while in
the second case, when the intensity of the one-phonon Raman peak is strongly
influenced by the interaction of an electron and of a hole with interface
imperfections (e. g., with trapped charge), p-phonons are most active.
Calculations of Raman scattering spectra for CdSe and PbS nanocrystals give a
good quantitative agreement with recent experimental results.Comment: 16 pages, 2 figures, E-mail addresses: [email protected],
[email protected], [email protected], accepted for publication in
Physical Review
Advantages of a Modular Mars Surface Habitat Approach
Early crewed Mars mission concepts developed by the National Aeronautics and Space Administration (NASA) assumed a single, large habitat would house six crew members for a 500-day Mars surface stay. At the end of the first mission, all surface equipment, including the habitat, -would be abandoned and the process would be repeated at a different Martian landing site. This work was documented in a series of NASA publications culminating with the Mars Design Reference Mission 5.0 (NASA-SP-2009-566). The Evolvable Mars Campaign (EMC) explored whether re-using surface equipment at a single landing site could be more affordable than the Apollo-style explore-abandon-repeat mission cadence. Initial EMC assumptions preserved the single, monolithic habitat, the only difference being a new requirement to reuse the surface habitat for multiple expedition crews. A trade study comparing a single large habitat versus smaller, modular habitats leaned towards the monolithic approach as more mass-efficient. More recent work has focused on the operational aspects of building up Mars surface infrastructure over multiple missions, and has identified compelling advantages of the modular approach that should be considered before making a final decision. This paper explores Mars surface mission operational concepts and integrated system analysis, and presents an argument for the modular habitat approach
Amelioration of bleomycin-induced lung fibrosis in hamsters by dietary supplementation with taurine and niacin: biochemical mechanisms.
Interstitial pulmonary fibrosis induced by intratracheal instillation of bleomycin (BL) involves an excess production of reactive oxygen species, unavailability of adequate levels of NAD and ATP to repair the injured pulmonary epithelium, and an overexuberant lung collagen reactivity followed by deposition of highly cross-linked mature collagen fibrils resistant to enzymatic degradation. In the present study, we have demonstrated that dietary supplementation with taurine and niacin offered almost complete protection against the lung fibrosis in a multidose BL hamster model. The mechanisms for the protective effect of taurine and niacin are multifaceted. These include the ability of taurine to scavenge HOCl and stabilize the biomembrane; niacin's ability to replenish the BL-induced depletion of NAD and ATP; and the combined effect of taurine and niacin to suppress all aspects of BL-induced increases in the lung collagen reactivity, a hallmark of interstitial pulmonary fibrosis. It was concluded from the data presented at this Conference that the combined treatment with taurine and niacin, which offers a multipronged approach, will have great therapeutic potential in the intervention of the development of chemically induced interstitial lung fibrosis in animals and humans
Recommended from our members
SMART-1 Impact Ground-based campaign
Based on predictions of impact magnitude and cloud ejecta dynamics, we organized a SMART-1 ground-based observation campaign to perform coordinated measurements of the impact. Results from the coordinated multi-site campaign will be discussed
LOFAR tied-array imaging and spectroscopy of solar S bursts
Context. The Sun is an active source of radio emission that is often associated with energetic phenomena ranging from nanoflares to coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), numerous millisecond duration radio bursts have been reported, such as radio spikes or solar S bursts (where S stands for short). To date, these have neither been studied extensively nor imaged because of the instrumental limitations of previous radio telescopes.
Aims. Here, LOw Frequency ARray (LOFAR) observations were used to study the spectral and spatial characteristics of a multitude of S bursts, as well as their origin and possible emission mechanisms.
Methods. We used 170 simultaneous tied-array beams for spectroscopy and imaging of S bursts. Since S bursts have short timescales and fine frequency structures, high cadence (~50 ms) tied-array images were used instead of standard interferometric imaging, that is currently limited to one image per second.
Results. On 9 July 2013, over 3000 S bursts were observed over a time period of ~8 h. S bursts were found to appear as groups of short-lived (<1 s) and narrow-bandwidth (~2.5 MHz) features, the majority drifting at ~3.5 MHz s-1 and a wide range of circular polarisation degrees (2−8 times more polarised than the accompanying Type III bursts). Extrapolation of the photospheric magnetic field using the potential field source surface (PFSS) model suggests that S bursts are associated with a trans-equatorial loop system that connects an active region in the southern hemisphere to a bipolar region of plage in the northern hemisphere.
Conclusions. We have identified polarised, short-lived solar radio bursts that have never been imaged before. They are observed at a height and frequency range where plasma emission is the dominant emission mechanism, however, they possess some of the characteristics of electron-cyclotron maser emission
- …