200 research outputs found

    Color determination as a tool to detect oil contamination on sandy beaches

    Get PDF
    El color ha sido utilizado en numerosos estudios para caracterizar las muestras de sedimento y discriminar su origen. Sin embargo, no existen estudios sobre la influencia de la contaminación en esta propiedad física. El objetivo de este trabajo es evaluar los cambios de color en el sedimento que presenta las diferentes morfologías del fuel (galletas, arenas grises). El color de las muestras seleccionadas sometidas a distintos tratamientos fue medido usando un espectrofotómetro Konica Minolta CM-2600d. Los sedimentos arenosos estudiados pertenecieron a dos playas (Nemiña y O Rostro), unas de las más afectadas por el accidente del petrolero Prestige (Noviembre 2002). Este estudio puso de manifiesto la importancia del color para la adecuada discriminación en el seguimiento de la contaminación con fuel. Nuestros resultados demostraron la capacidad del espectrofotómetro para evidenciar la existencia de contaminación por fuel en arenas que parecían limpias a simple vista. Además, esta técnica fue útil para establecer el grado de contaminación por fuel, relacionando la oscuridad del color gris con el estado de degradación del fuel en el sedimentoColor has been used in many studies to characterize sediment samples and to discriminate their origin. However, there are not studies about the influence of oil contamination in this physical property. The aim of this work is to assess the changes in color in sediments showing different types of oil appearances (tar balls, grey sands). The color of selected samples subjected to different treatments was measured using a Konica Minolta CM-2600d spectrophotometer. The studied sand sediments belong to the two beaches (Nemiña and O Rostro) most strongly affected by the Prestige oil spill (November 2002). This study highlights the interest of adequate color discrimination for oil contamination monitoring. Our results demonstrated the ability of spectrophotometer to evidence the occurrence of oil contamination in sands that look clean to the naked eye. Furthermore, this technique was also useful to establish the degree of oil contamination, linking the darkness of the grey color to the degradation stage of the oil in the sedimen

    Magnocellular bias in exogenous attention to biologically salient stimuli as revealed by manipulating their luminosity and color

    Full text link
    This is the author’s final version of the article, and that the article has been accepted for publication in Journal of Cognitive NeuroscienceExogenous attention is a set of mechanisms that allow us to detect and reorient toward salient events—such as appetitive or aversive—that appear out of the current focus of attention. The nature of these mechanisms, particularly the involvement of the parvocellular and magnocellular visual processing systems, was explored. Thirty-four participants performed a demanding digit categorization task while salient (spiders or S) and neutral (wheels or W) stimuli were presented as distractors under two figure–ground formats: heterochromatic/isoluminant (exclusively processed by the parvocellular system, Par trials) and isochromatic/heteroluminant (preferentially processed by the magnocellular system, Mag trials). This resulted in four conditions: SPar, SMag, WPar, and WMag. Behavioral (RTs and error rates in the task) and electrophysiological (ERPs) indices of exogenous attention were analyzed. Behavior showed greater attentional capture by SMag than by SPar distractors and enhanced modulation of SMag capture as fear of spiders reported by participants increased. ERPs reflected a sequence from magnocellular dominant (P1p, ≃120 msec) to both magnocellular and parvocellular processing (N2p and P2a, ≃200 msec). Importantly, amplitudes in one N2p subcomponent were greater to SMag than to SPar and WMag distractors, indicating greater magnocellular sensitivity to saliency. Taking together, results support a magnocellular bias in exogenous attention toward distractors of any nature during initial processing, a bias that remains in later stages when biologically salient distractors are presen

    Red maca (Lepidium meyenii) reduced prostate size in rats

    Get PDF
    BACKGROUND: Epidemiological studies have found that consumption of cruciferous vegetables is associated with a reduced risk of prostate cancer. This effect seems to be due to aromatic glucosinolate content. Glucosinolates are known for have both antiproliferative and proapoptotic actions. Maca is a cruciferous cultivated in the highlands of Peru. The absolute content of glucosinolates in Maca hypocotyls is relatively higher than that reported in other cruciferous crops. Therefore, Maca may have proapoptotic and anti-proliferative effects in the prostate. METHODS: Male rats treated with or without aqueous extracts of three ecotypes of Maca (Yellow, Black and Red) were analyzed to determine the effect on ventral prostate weight, epithelial height and duct luminal area. Effects on serum testosterone (T) and estradiol (E2) levels were also assessed. Besides, the effect of Red Maca on prostate was analyzed in rats treated with testosterone enanthate (TE). RESULTS: Red Maca but neither Yellow nor Black Maca reduced significantly ventral prostate size in rats. Serum T or E2 levels were not affected by any of the ecotypes of Maca assessed. Red Maca also prevented the prostate weight increase induced by TE treatment. Red Maca administered for 42 days reduced ventral prostatic epithelial height. TE increased ventral prostatic epithelial height and duct luminal area. These increases by TE were reduced after treatment with Red Maca for 42 days. Histology pictures in rats treated with Red Maca plus TE were similar to controls. Phytochemical screening showed that aqueous extract of Red Maca has alkaloids, steroids, tannins, saponins, and cardiotonic glycosides. The IR spectra of the three ecotypes of Maca in 3800-650 cm (-1) region had 7 peaks representing 7 functional chemical groups. Highest peak values were observed for Red Maca, intermediate values for Yellow Maca and low values for Black Maca. These functional groups correspond among others to benzyl glucosinolate. CONCLUSIONS: Red Maca, a cruciferous plant from the highland of Peru, reduced ventral prostate size in normal and TE treated rats

    R-RAS2 overexpression in tumors of the human central nervous system

    Get PDF
    Malignant tumors of the central nervous system (CNS) are the 10th most frequent cause of cancer mortality. Despite the strong malignancy of some such tumors, oncogenic mutations are rarely found in classic members of the RAS family of small GTPases. This raises the question as to whether other RAS family members may be affected in CNS tumors, excessively activating RAS pathways. The RAS-related subfamily of GTPases is that which is most closely related to classical Ras and it currently contains 3 members: RRAS, RRAS2 and RRAS3. While R-RAS and R-RAS2 are expressed ubiquitously, R-RAS3 expression is restricted to the CNS. Significantly, both wild type and mutated RRAS2 (also known as TC21) are overexpressed in human carcinomas of the oral cavity, esophagus, stomach, skin and breast, as well as in lymphomas. Hence, we analyzed the expression of R-RAS2 mRNA and protein in a wide variety of human CNS tumors and we found the R-RAS2 protein to be overexpressed in all of the 90 CNS cancer samples studied, including glioblastomas, astrocytomas and oligodendrogliomas. However, R-Ras2 was more strongly expressed in low grade (World Health Organization grades I-II) rather than high grade (grades III-IV) tumors, suggesting that R-RAS2 is overexpressed in the early stages of malignancy. Indeed, R-RAS2 overexpression was evident in pre-malignant hyperplasias, both at the mRNA and protein levels. Nevertheless, such dramatic changes in expression were not evident for the other two subfamily members, which implies that RRAS2 is the main factor triggering neural transformation.This work was supported by grants SAF2012-31279 from the ‘Comisión Interministerial de Ciencia y Tecnología’ and the ‘Ramón y Cajal’ program (RYC-2010-06251, to B.C.). We also thank the Fundación Ramón Areces for its institutional support of the ‘Centro de Biología Molecular Severo Ochoa’

    Cuprizone-Induced Neurotoxicity in Human Neural Cell Lines Is Mediated by a Reversible Mitochondrial Dysfunction: Relevance for Demyelination Models

    Get PDF
    Suitable in vivo and in vitro models are instrumental for the development of new drugs aimed at improving symptoms or progression of multiple sclerosis (MS). The cuprizone (CPZ)-induced murine model has gained momentum in recent decades, aiming to address the demyelination component of the disease. This work aims at assessing the differential cytotoxicity of CPZ in cells of different types and from different species: human oligodendroglial (HOG), human neuroblastoma (SH-SY5Y), human glioblastoma (T-98), and mouse microglial (N-9) cell lines. Moreover, the effect of CPZ was investigated in primary rat brain cells. Cell viability was assayed by oxygen rate consumption and by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide-based (MTT) method. Our results demonstrated that CPZ did not cause death in any of the assayed cell models but affected mitochondrial function and aerobic cell respiration, thus compromising cell metabolism in neural cells and neuron-glia co-cultures. In this sense, we found differential vulnerability between glial cells and neurons as is the case of the CPZ-induced mouse model of MS. In addition, our findings demonstrated that reduced viability was spontaneous reverted in a time-dependent manner by treatment discontinuation. This reversible cell-based model may help to further investigate the role of mitochondria in the disease, and study the molecular intricacies underlying the pathophysiology of the MS and other demyelinating diseases. Keywords: neurodegenerative diseases, copper chelator, pathophysiology, cell metabolism, gli

    Is a neutral expression also a neutral stimulus?: a study with functional magnetic resonance

    Full text link
    Although neutral faces do not initially convey an explicit emotional message, it has been found that individuals tend to assign them an affective content. Moreover, previous research has shown that affective judgments are mediated by the task they have to perform. Using functional magnetic resonance imaging in 21 healthy participants, we focus this study on the cerebral activity patterns triggered by neutral and emotional faces in two different tasks (social or gender judgments). Results obtained, using conjunction analyses, indicated that viewing both emotional and neutral faces evokes activity in several similar brain areas indicating a common neural substrate. Moreover, neutral faces specifically elicit activation of cerebellum, frontal and temporal areas, while emotional faces involve the cuneus, anterior cingulated gyrus, medial orbitofrontal cortex, posterior superior temporal gyrus, precentral/postcentral gyrus and insula. The task selected was also found to influence brain activity, in that the social task recruited frontal areas while the gender task involved the posterior cingulated, inferior parietal lobule and middle temporal gyrus to a greater extent. Specifically, in the social task viewing neutral faces was associated with longer reaction times and increased activity of left dorsolateral frontal cortex compared with viewing facial expressions of emotions. In contrast, in the same task emotional expressions distinctively activated the left amygdale. The results are discussed taking into consideration the fact that, like other facial expressions, neutral expressions are usually assigned some emotional significance. However, neutral faces evoke a greater activation of circuits probably involved in more elaborate cognitive processing.This research was supported by a grant from Ministerio de Ciencia y Tecnología, Spain (MICINN-PSI-2009-09067)

    In-depth in vitro Evaluation of the Activity and Mechanisms of Action of Organic Acids and Essential Oils Against Swine Enteropathogenic Bacteria

    Get PDF
    P. 1-13Alternative antimicrobials require a deep understanding of their action mechanisms by in vitro assays which support science-based field use. This study focuses on the characterization of bactericidal mechanisms of potential antimicrobial compounds, two organic acids and three single essential oil (EO) compounds against swine enteropathogenic bacteria Escherichia coli, Salmonella enterica subsp. enterica serovar Typhimurium, and Clostridium perfringens. Target concentrations of the compounds were evaluated using the inhibitory potential of the vapor phase and bacterial viability after short-term exposure, while cell targets were disclosed using flow cytometry (FC), Fourier-transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). All tested compounds exhibited vapor phase activity against the three bacterial species, except sodium salt of coconut fatty acid distillates against C. perfringens. Survival test results evidenced that effects on bacterial viability were concentration dependent and higher in single EO compounds than in organic acids. In detail, thymol and its isomer carvacrol were the most effective compounds. Further characterization of thymol and cinnamaldehyde activity revealed that thymol main target was the cell membrane, since it caused striking damages in the membrane permeability, integrity and composition evidenced by FC and FTIR in the three enteric pathogens. In contrast, cinnamaldehyde was more effective against enterobacteria than against C. perfringens and only caused slightly damages at the highest concentration tested. Its target at the molecular level differed between enterobacteria and C. perfringens isolates. The SEM micrographs allowed us to confirm the results previously obtained for both EO compounds by other techniques. Altogether, the study showed the straight effect of these antimicrobials, which could constitute relevant information to optimize their feed inclusion rates in field studies or field use.S

    Dense strontium hexaferrite-based permanent magnet composites assisted by cold sintering process

    Get PDF
    [EN] The use of rare-earth-based permanent magnets is one of the critical points for the development of the current technology. On the one hand, industry of the rare-earths is highly polluting due to the negative environmental impact of their extraction and, on the other hand, the sector is potentially dependent on China. Therefore, investigation is required both in the development of rare-earth-free permanent magnets and in sintering processes that enable their greener fabrication with attractive magnetic properties at a more competitive price. This work presents the use of a cold sintering process (CSP) followed by a post-annealing at 1100 °C as a new way to sinter composite permanent magnets based on strontium ferrite (SFO). Composites that incorporate a percentage ≤ 10% of an additional magnetic phase have been prepared and the morphological, structural and magnetic properties have been evaluated after each stage of the process. CSP induces a phase transformation of SFO in the composites, which is partially recovered by the post-thermal treatment improving the relative density to 92% and the magnetic response of the final magnets with a coercivity of up to 3.0 kOe. Control of the magnetic properties is possible through the composition and the grain size in the sintered magnets. These attractive results show the potential of the sintering approach as an alternative to develop modern rare-earth-free composite permanent magnets.This work has been supported by the Ministerio Español de Ciencia e Innovación (MICINN), Spain, through the projects MAT2017-86540-C4-1-R and RTI2018-095303-A-C52, and by the European Commission through Project H2020 No. 720853 (Amphibian). C.G.-M. and A.Q. acknowledge financial support from MICINN through the “Juan de la Cierva” program (FJC2018-035532-I) and the “Ramón y Cajal” contract (RYC-2017-23320). S. R.-G. gratefully acknowledges the financial support of the Alexander von Humboldt foundation, Germany. A.S. acknowledges the financialsupport from the Comunidad de Madrid, Spain, for an “Atracción de Talento Investigador” contract (No. 2017-t2/IND5395)

    On the Tunability of Toxicity for Viologen‐Derivatives as Anolyte for Neutral Aqueous Organic Redox Flow Batteries

    Get PDF
    Viologen-derivatives are the most widely used redox organic molecules for neutral pH negative electrolyte of redox flow batteries. However, the long-established toxicity of the herbicide methyl-viologen raises concern for deployment of viologen-derivatives at large scale in flow batteries. Herein, we demonstrate the radically different cytotoxicity and toxicology of a series of viologen-derivatives in in vitro assays using model organisms representative of human and environmental exposure, namely human lung carcinoma epithelial cell line (A549) and the yeast Saccharomyces cerevisiae. The results show that safe viologen derivatives can be molecularly engineered, representing a promising family of negolyte materials for neutral redox flow batteries.The authors acknowledge financial support by the Spanish Government (Ministerio de Ciencia e Innovacion, Grants PID2021-124974OB-C22 and PID2020-115789GB-C21) and Ramon y Cajal award (RYC2018-026086-I) as well as the MeBattery project. MeBattery has received funding from the European Innovation Council of the European Union under Grant Agreement no. 101046742. This work was supported by the Regional Government of Castilla y Leon (Junta de Castilla y Leon) and by the Ministry of Science and Innovation MICIN and the European Union NextGenerationEU/PRTR. We also gratefully acknowledge Junta de Castilla y Leon (BU049P20) and FEDER for financial support
    corecore