158 research outputs found

    A decision support tool to assist with lifetime extension of wind turbines

    Get PDF
    This paper is aimed at analysing the levelised cost of energy (LCOE) of onshore wind turbine generators (WTGs) that are in operation beyond their design lifetime. In order to do so, the LCOE approach is introduced and input parameters are discussed for a UK deployment. In addition, a methodology is presented to support economic lifetime extension and investment decision making at the end of an asset's design lifetime. As part of a case study, a wind farm consisting of six 900 kW WTGs is subjected to different combinations of i) lifetime extension (5- 15 years), ii) input assumptions (pessimistic, central, optimistic), and iii) re-investment types (retrofits). Results indicate that in the central lifetime extension scenario, LCOE estimates of 22.40 £/MWh are achievable

    The effect of upscaling and performance degradation on onshore wind turbine lifetime extension decision making

    Get PDF
    Ever greater rated wind turbine generators (WTGs) are reaching their end of design life in the near future. In addition, first approaches quantified the impact of long-term performance degradation of WTGs. As a consequence, this work is aimed at discussing and analysing the impact of upscaling and performance degradation on the economics of wind turbine lifetime extension. Findings reveal that the lifetime extension levelised cost of energy (LCOE2) of an 18 MW wind farm comprising of 0.5 MW rated WTGs are within the order of £23.52 per MWh. Alternatively, if the same wind farm consists of fewer 2 and 3 MW WTGs, the LCOE2 reduces to £16.56 and £15.95 per MWh, respectively. Further, findings reveal that an annual performance degradation of 1.6% (0.2%) increases LCOE2 by 34-41% (3.6-4.3%)

    Life extension for wind turbine structures and foundations

    Get PDF
    This paper presents economic life extension scenarios for wind turbines as well as complimentary structural health monitoring of turbine foundations based on an advanced optical sensor network. Demand for this is driven by an ageing asset base and the overall reduction in governmental support towards wind energy in Europe, despite the agreed 2020 and extended 2030 renewable energy targets. Consequently, this paper displays early work on economic evaluation of levelised cost of energy (LCOE) under simple life extension scenarios and concludes that reductions within the order of 5% of LCOE can be achieved by extending a turbine’s lifetime by up to 15 years. At the same time, an ongoing project is presented that aims to apply structural health monitoring to a wind turbine foundation aimed at providing operational load data that can justify or dictate lifetime extension of a wind turbine foundation

    Levelised cost of energy: a theoretical justification and critical assessment.

    Get PDF
    Although widely accepted as a measure of the comparative lifetime costs of electricity generation alternatives, levelised cost of energy (LCOE) lacks a theoretical foundation in the academic literature and encompasses a number of areas where caution is important. Therefore, this paper seeks to provide a theoretical foundation by comparing the metric with alternative LCOE metrics and by undertaking a brief literature review to describe its strengths and weaknesses. In comparison with other potential measures of unit cost of energy, LCOE is found to be the preferred choice, in large part because of its widespread adoption. The weaknesses of the LCOE are found to centre on discount rate, inflation effects and the sensitivity of results to uncertainty in future commodity costs. These weaknesses are explored in the context of comparing combined cycle gas fired generation and offshore wind in the UK, based on publicly available cost measures. It is found that with variability of future fuel gas prices, and a Monte Carlo approach to modelling LCOE, the range of LCOE for CCGT is much broader in comparison to the LCOE of offshore wind. It is urged that explicit account be taken of the areas of weakness in future use of LCOE

    Comparison of epoxy and braze-welded attachment methods for FBG strain gauges

    Get PDF
    This paper presents experimental results from fatigue and static loading tests performed on both epoxy and braze-welded FBG strain sensors. Most FBG attachment methods are relatively understudied, with epoxy the most commonly used. Long curing times and humidity sensitivity during curing render epoxy inappropriate for certain implementations. This work shows that a bespoke braze-welded attachment design is able to achieve a higher static failure limit of 22kN when compared to strain gauge epoxies, which fail at 20kN. Both methods demonstrate high fatigue life, with no significant deterioration after two million cycles. Epoxy swelling was observed when the sensors were held at a relative humidity of 96%, applying ~0.6 mϵ of tension to the FBG, whereas a braze-weld attachment was unaffected by humidity

    Wind turbine lifetime extension decision-making based on structural health monitoring

    Get PDF
    In this work, structural health monitoring data is applied to underpin a long-term wind farm lifetime extension strategy. Based on the outcome of the technical analysis, the case for an extended lifetime of 15 years is argued. Having established the lifetime extension strategy, the single wind turbine investigated within a wind farm is subjected to a bespoke economic lifetime extension case study. In this case study, the local wind resource is taken into consideration, paired with central, optimistic, and pessimistic operational cost assumptions. Besides a deterministic approach, a stochastic analysis is carried out based on Monte Carlo simulations of selected scenarios. Findings reveal the economic potential to operate profitably in a subsidy-free environment with a P90 levelised cost of energy of £25.02 if no component replacement is required within the nacelle and £42.53 for a complete replacement of blades, generator, and gearbox

    Fire analysis of steel frames with the use of artificial neural networks

    Get PDF
    The paper presents an alternative approach to the modelling of the mechanical behaviour of steel frame material when exposed to the high temperatures expected in fires. Based on a series of stress-strain curves obtained experimentally for various temperature levels, an artificial neural network (ANN) is employed in the material modelling of steel. Geometrically and materially, a non-linear analysis of plane frame structures subjected to fire is performed by FEM. The numerical results of a simply supported beam are compared with our measurements, and show a good agreement, although the temperature-displacement curves exhibit rather irregular shapes. It can be concluded that ANN is an efficient tool for modelling the material properties of steel frames in fire engineering design studies. (c) 2007 Elsevier Ltd. All rights reserved

    CELLmicrocosmos 2.2: advancements and applications in modeling of three-dimensional PDB membranes

    Get PDF
    Sommer B, Dingersen T, Schneider S, Rubert S, Gamroth C. CELLmicrocosmos 2.2: advancements and applications in modeling of three-dimensional PDB membranes (Conference Abstract). In: Journal of Cheminformatics. Journal of Cheminformatics. Vol 2(Suppl 1):O21. Springer Science and Business Media LLC; 2010

    Oceanic eddy‑induced modifications to air–sea heat and CO2 fluxes in the Brazil‑Malvinas Confluence

    Get PDF
    Sea surface temperature (SST) anomalies caused by a warm core eddy (WCE) in the Southwestern Atlantic Ocean (SWA) rendered a crucial influence on modifying the marine atmospheric boundary layer (MABL). During the first cruise to support the Antarctic Modeling and Observation System (ATMOS) project, a WCE that was shed from the Brazil Current was sampled. Apart from traditional meteorological measurements, we used the Eddy Covariance method to directly measure the ocean–atmosphere sensible heat, latent heat, momentum, and carbon dioxide ( CO2) fluxes. The mechanisms of pressure adjustment and vertical mixing that can make the MABL unstable were both identified. The WCE also acted to increase the surface winds and heat fluxes from the ocean to the atmosphere. Oceanic regions at middle and high latitudes are expected to absorb atmospheric CO2, and are thereby considered as sinks, due to their cold waters. Instead, the presence of this WCE in midlatitudes, surrounded by predominantly cold waters, caused the ocean to locally act as a CO2 source. The contribution to the atmosphere was estimated as 0.3 ± 0.04 mmol m− 2 day− 1, averaged over the sampling period. The CO2 transfer velocity coefficient (K) was determined using a quadratic fit and showed an adequate representation of ocean–atmosphere fluxes. The ocean–atmosphere CO2, momentum, and heat fluxes were each closely correlated with the SST. The increase of SST inside the WCE clearly resulted in larger magnitudes of all of the ocean–atmosphere fluxes studied here. This study adds to our understanding of how oceanic mesoscale structures, such as this WCE, affect the overlying atmosphere
    corecore