6 research outputs found

    To shift, or not to shift: Adequate selection of an internal standard in mass-shift approaches using tandem ICP-mass spectrometry (ICP-MS/MS)

    Get PDF
    The use of an internal standard to correct for potential matrix effects and instrument instability is common practice in ICP-MS. However, with the introduction of a new generation of ICP-MS instrumentation with a tandem mass spectrometry configuration (ICP-MS/MS), the use of chemical resolution in a mass-shift approach has become much more popular, suggesting that the appropriate selection of an internal standard needs revision. In this particular case, it needs to be decided whether the internal standard should also be subjected to a mass-shift or can simply be monitored on-mass ("to shift, or not to shift"). In this work, 17 elements covering a wide range of masses (24-205 amu) and ionization energies (3.89-9.39 eV) were measured via on-mass and/or mass-shift strategies, and the corresponding atomic ions and reaction product ions were monitored during various systematic experiments. For mass-shifting, an NH3/He gas mixture was used to obtain NH3-based reaction product ions (cluster formation). Product ion scanning (PIS) was used for assessing the differences in reactivity between the different analytes and for the identification of the best suited reaction product ions. It was found that the use of chemical resolution can significantly affect the short-term signal stability and that ion signals measured on-mass are not affected in the same way as those measured mass-shifted. Variations affecting the signal intensities of both atomic and reaction product ions can be attributed to the ion-molecule chemistry occurring within the collision/reaction cell and were found to be related with some degree of initial instability in the cell and differences in reactivity. The use of a sufficiently long stabilization time, however, avoids or at least mitigates such differences in the behavior between signals monitored on-mass and after mass-shifting, respectively. Furthermore, the introduction of cell disturbances, such as those generated after quickly switching between different sets of operating conditions in a multi-tune method, revealed significant differences in signal behavior between atomic and reaction product ions, potentially hampering the use of an internal standard monitored on-mass when the analysis is based on an analyte monitored after mass-shifting. However, the use of a reasonable waiting time again greatly mitigates such differences, with the duration of this stabilization time depending on the magnitude of the cell disturbances (e.g., switch between vented and pressurized mode or only between pressurized modes using different gas flow rates). In addition, also the effect of varying different instrument settings (plasma power, torch position, and gas and liquid flow rates) was evaluated, but no remarkable differences were found between signals monitored on-mass and those mass-shifted. Interestingly, a statistical evaluation of the influence of the different settings on the signal intensities of all ions monitored did not reveal the a priori important role of some properties traditionally suggested for adequate selection of analyte/internal standard pairs, such as mass number or ionization energy, as also suggested in other recent studies. © The Royal Society of Chemistry

    Characterization of SiO2 Nanoparticles by Single Particle - Inductively Coupled Plasma – Tandem Mass Spectroscopy

    Get PDF
    This work uses the tandem ICP-MS (ICPMS/MS) for obtaining interference-freeconditions to characterize SiO2 nanoparticles ranging between 80 and 400nm. These NPs have been detected and accurately characterized. For SiO2 NPs >100 nm, it was possible to provide accurateresults in a straightforward way, as theirsignal distributions are well resolved fromthat of the background

    Characterization of SiO2 nanoparticles by single particle-inductively coupled plasma-tandem mass spectrometry (SP-ICP-MS/MS)

    Get PDF
    The increase in the use of SiO2 nanoparticles (NPs) is raising concern about their environmental and health effects, thus necessitating the development of novel methods for their straightforward detection and characterization. Single particle ICP-mass spectrometry (SP-ICP-MS) is able to provide information on the size of NPs, their particle number density and mass concentration. However, the determination of Si via ICP-MS is strongly hampered by the occurrence of spectral overlap from polyatomic species (e.g., CO+ and N2+). The use of tandem ICP-MS (ICP-MS/MS) enables interference-free conditions to be obtained, even in the most demanding applications. Upon testing several gases, the use of CH3F (monitoring of SiF+, mass-shift approach) and of H2 (monitoring of Si+, on-mass approach) were demonstrated to be the most suitable to overcome the spectral interference affecting ultra-trace Si determination (LoD < 15 ng L-1). By using these approaches, SiO2 NPs (ranging between 80 and 400 nm) can be detected and characterized. For SiO2 NPs > 100 nm, it was possible to provide accurate results in a straightforward way, as the signals they give rise to are well resolved from those of the background. In the case of 80 and 100 nm NPs, the use of a simple deconvolution approach following a Gaussian model was needed to characterize SiO2 NPs apparently showing incomplete distributions as a result of the presence of the background signal. Overall, the methods developed using SP-ICP-MS/MS are sensitive and selective enough for the interference-free determination of Si at ultra-trace levels, also in the form of SiO2 NPs
    corecore