1,432 research outputs found
Transforming Leadership Pathways for Humanities Professionals in Higher Education
Transforming Leadership Pathways for Humanities Professionals in Higher Education includes thirteen essays from a variety of contributors investigating how humanities professionals grapple with the opportunities and challenges of leadership positions. Written by insiders sharing their lived experience, this collection provides an authentic look at the multiple roles humanities specialists play, as well as offers strategies for professional growth, sustenance, and satisfaction. The collection also considers the relationship between disciplinary areas of study, academic training, and the valuable skill sets and habits of mind that serve higher education leaders.
While Transforming Leadership Pathways emphasizes that a leadership route in higher education can be a welcome and positive professional move for many humanities scholars, the volume also acknowledges the issues that arise when faculty take on administrative positions while otherwise marginalized on campus because of faculty status, rank, or personal identity. This collection demystifies the path into higher education administration and argues that humanities scholars are uniquely qualified for such roles. Empathetic, deeply analytical, attuned to historical context, and trained in communication, teachers and scholars who hail from humanities disciplines often find themselves well-suited to the demands of complex academic leadership in today’s colleges and universities.https://docs.lib.purdue.edu/navigatingcareershighered/1001/thumbnail.jp
Recommended from our members
Does the source migration pathway of HBCDs to household dust influence their bioaccessibility?
A study was conducted to assess the human bioaccessibility of dust contaminated with hexabromocyclododecane (HBCD) via two migration pathways a) volatilisation with subsequent partitioning to dust particles, and b) abrasion of treated textile fibres directly to the dust. This was achieved using previously developed experimental chamber designs to generate dust samples contaminated with HBCDs emit-ted from a HBCD treated textile curtain. The generated dust samples were exposed to an in vitro colon extended physiologically based extraction test (CE-PBET). The bioaccessibility of the HBCDs which were incorporated within dust as a result of volatilisation from the curtain material with subsequent partitioning to dust was higher than in dusts contaminated with HBCDs via abrasion of the curtain (35% and 15% respectively). We propose this occurs due to a stronger binding of HBCDs to treated fabric fibres than that experienced following volatilisation and sorption of HBCDs to dust particles
Multi-domain cognitive impairments at school age in very preterm-born children compared to term-born peers
Background Preterm infants are at risk for functional impairments in motor, cognitive, and behavioral development that may persist into childhood. The aim of this study was to determine the co-occurrence of cognitive impairments in multiple cognitive domains at school age in very preterm born children compared to term-born children. Methods Comparative study including 60 very preterm-born children (gestational age = 2), versus 3% of the controls (odds ratio, OR 4.65, 95%-confidence interval, CI 1.33-16.35). For multiple suspect-abnormal cognitive outcomes, rates were 55% versus 25% (OR 3.02, 95%-CI 1.49-6.12). We found no pattern of co-occurrence of cognitive impairments among preterm children that deviated from term-born controls. However, low performance IQ was more frequently accompanied by additional cognitive impairments in preterms than in controls (OR 5.43, 95%-CI 1.75-16.81). Conclusions A majority of preterm children showed co-occurrence of impairments in multiple cognitive domains, but with no specific pattern of impairments. The occurrence of multi-domain cognitive impairments is higher in preterms but this seems to reflect a general increase, not one with a pattern specific for preterm-born children
Functional Movement Disorders During the COVID ‐19 Pandemic: Back to Charcot's Era at the Salpêtrière
info:eu-repo/semantics/publishedVersio
Neuroinflammatory markers at school age in preterm born children with neurodevelopmental impairments
Background: Immune system activation in the neonatal period is associated with white matter injury in preterm infants. In animal studies, neonatal priming of the immune system leads to chronic activation of i.e. microglia cells and altered neuroinflammatory responses potentially years after preterm birth. This may contribute further to brain injury and neurodevelopmental impairment. It is unknown to what extend this also occurs in human. Aim: To identify neuro-inflammatory markers at school age that relate to motor, cognitive and behavioral impairments in preterm born children in a pilot case-control study. Methods:We included n = 20 preterm born children (GA < 28 weeks) in this study, of which n = 10 with motor, cognitive and behavorial impairments and n = 10 preterm born controls next to n = 30 healthy adult controls. In the preterm children, at 8–9 years, 39 inflammatory markers were assessed by Luminex assay in blood serum samples. Firstly, the preterm concentrations of these markers were compared to n = 30 adult controls. Then a univariate analysis was performed to determine differences in values between preterm children with and without impairment at school age. Finally, a principal component analysis and hierarchical clustering was performed to identify protein profiles in preterm born children that relate to impairment at school age. Results: Inflammatory proteins in preterm children at school age differed from values of adult controls. Within the group of preterm children, we found significantly higher levels of GM-CSF in preterms with impairment (p < 0.01) and a trend towards significance for Gal1 and TRAIL (p = 0.06 and p = 0.06 respectively) when compared to preterms without impairment. In addition, differences in clustering of proteins between preterm children was observed, however this variance was not explained by presence of neurodevelopmental impairments. Conclusion: The inflammatory profile at school age in preterm children is different from that of adult controls. The immune modulating cytokines GM-CSF, Gal1 and TRAIL were higher in preterm children with impairment than control preterm children, suggesting that immune responses are altered in these children. No specific cluster of inflammatory markers could be identified. Results indicate that even at school age, neuroinflammatory pathways are activated in preterm born children with neurodevelopmental impairments.</p
High-Content Chemical and RNAi Screens for Suppressors of Neurotoxicity in a Huntington's Disease Model
To identify Huntington's Disease therapeutics, we conducted high-content small molecule and RNAi suppressor screens using a Drosophila primary neural culture Huntingtin model. Drosophila primary neurons offer a sensitive readout for neurotoxicty, as their neurites develop dysmorphic features in the presence of mutant polyglutamine-expanded Huntingtin compared to nonpathogenic Huntingtin. By tracking the subcellular distribution of mRFP-tagged pathogenic Huntingtin and assaying neurite branch morphology via live-imaging, we identified suppressors that could reduce Huntingtin aggregation and/or prevent the formation of dystrophic neurites. The custom algorithms we used to quantify neurite morphologies in complex cultures provide a useful tool for future high-content screening approaches focused on neurodegenerative disease models. Compounds previously found to be effective aggregation inhibitors in mammalian systems were also effective in Drosophila primary cultures, suggesting translational capacity between these models. However, we did not observe a direct correlation between the ability of a compound or gene knockdown to suppress aggregate formation and its ability to rescue dysmorphic neurites. Only a subset of aggregation inhibitors could revert dysmorphic cellular profiles. We identified lkb1, an upstream kinase in the mTOR/Insulin pathway, and four novel drugs, Camptothecin, OH-Camptothecin, 18β-Glycyrrhetinic acid, and Carbenoxolone, that were strong suppressors of mutant Huntingtin-induced neurotoxicity. Huntingtin neurotoxicity suppressors identified through our screen also restored viability in an in vivo Drosophila Huntington's Disease model, making them attractive candidates for further therapeutic evaluation.National Institutes of Health (U.S.) (grant R01 EB007042)National Institutes of Health (U.S.
Synovitis in osteoarthritis: current understanding with therapeutic implications
Modern concepts of osteoarthritis (OA) have been forever changed by modern imaging phenotypes demonstrating complex and multi-tissue pathologies involving cartilage, subchondral bone and (increasingly recognized) inflammation of the synovium. The synovium may show significant changes, even before visible cartilage degeneration has occurred, with infiltration of mononuclear cells, thickening of the synovial lining layer and production of inflammatory cytokines. The combination of sensitive imaging modalities and tissue examination has confirmed a high prevalence of synovial inflammation in all stages of OA, with a number of studies demonstrating that synovitis is related to pain, poor function and may even be an independent driver of radiographic OA onset and structural progression. Treating key aspects of synovial inflammation therefore holds great promise for analgesia and also for structure modification. This article will review current knowledge on the prevalence of synovitis in OA and its role in symptoms and structural progression, and explore lessons learnt from targeting synovitis therapeutically
Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine
[This corrects the article DOI: 10.1186/s13054-016-1208-6.]
Dopamine D2 Receptor Stimulation Potentiates PolyQ-Huntingtin-Induced Mouse Striatal Neuron Dysfunctions via Rho/ROCK-II Activation
Huntington's disease (HD) is a polyglutamine-expanded related neurodegenerative disease. Despite the ubiquitous expression of expanded, polyQ-Huntingtin (ExpHtt) in the brain, striatal neurons present a higher susceptibility to the mutation. A commonly admitted hypothesis is that Dopaminergic inputs participate to this vulnerability. We previously showed that D2 receptor stimulation increased aggregate formation and neuronal death induced by ExpHtt in primary striatal neurons in culture, and chronic D2 antagonist treatment protects striatal dysfunctions induced by ExpHtt in a lentiviral-induced model system in vivo. The present work was designed to elucidate the signalling pathways involved, downstream D2 receptor (D2R) stimulation, in striatal vulnerability to ExpHtt.Using primary striatal neurons in culture, transfected with a tagged-GFP version of human exon 1 ExpHtt, and siRNAs against D2R or D1R, we confirm that DA potentiates neuronal dysfunctions via D2R but not D1R stimulation. We demonstrate that D2 agonist treatment induces neuritic retraction and growth cone collapse in Htt- and ExpHtt expressing neurons. We then tested a possible involvement of the Rho/ROCK signalling pathway, which plays a key role in the dynamic of the cytoskeleton, in these processes. The pharmacological inhibitors of ROCK (Y27632 and Hydroxyfasudil), as well as siRNAs against ROCK-II, reversed D2-related effects on neuritic retraction and growth cone collapse. We show a coupling between D2 receptor stimulation and Rho activation, as well as hyperphosphorylation of Cofilin, a downstream effector of ROCK-II pathway. Importantly, D2 agonist-mediated potentiation of aggregate formation and neuronal death induced by ExpHtt, was totally reversed by Y27632 and Hydroxyfasudil and ROCK-II siRNAs.Our data provide the first demonstration that D2R-induced vulnerability in HD is critically linked to the activation of the Rho/ROCK signalling pathway. The inclusion of Rho/ROCK inhibitors could be an interesting therapeutic option aimed at forestalling the onset of the disease
Neuroinflammatory markers at school age in preterm born children with neurodevelopmental impairments
Background: Immune system activation in the neonatal period is associated with white matter injury in preterm infants. In animal studies, neonatal priming of the immune system leads to chronic activation of i.e. microglia cells and altered neuroinflammatory responses potentially years after preterm birth. This may contribute further to brain injury and neurodevelopmental impairment. It is unknown to what extend this also occurs in human. Aim: To identify neuro-inflammatory markers at school age that relate to motor, cognitive and behavioral impairments in preterm born children in a pilot case-control study. Methods: We included n = 20 preterm born children (GA < 28 weeks) in this study, of which n = 10 with motor, cognitive and behavorial impairments and n = 10 preterm born controls next to n = 30 healthy adult controls. In the preterm children, at 8–9 years, 39 inflammatory markers were assessed by Luminex assay in blood serum samples. Firstly, the preterm concentrations of these markers were compared to n = 30 adult controls. Then a univariate analysis was performed to determine differences in values between preterm children with and without impairment at school age. Finally, a principal component analysis and hierarchical clustering was performed to identify protein profiles in preterm born children that relate to impairment at school age. Results: Inflammatory proteins in preterm children at school age differed from values of adult controls. Within the group of preterm children, we found significantly higher levels of GM-CSF in preterms with impairment (p < 0.01) and a trend towards significance for Gal1 and TRAIL (p = 0.06 and p = 0.06 respectively) when compared to preterms without impairment. In addition, differences in clustering of proteins between preterm children was observed, however this variance was not explained by presence of neurodevelopmental impairments. Conclusion: The inflammatory profile at school age in preterm children is different from that of adult controls. The immune modulating cytokines GM-CSF, Gal1 and TRAIL were higher in preterm children with impairment than control preterm children, suggesting that immune responses are altered in these children. No specific cluster of inflammatory markers could be identified. Results indicate that even at school age, neuroinflammatory pathways are activated in preterm born children with neurodevelopmental impairments
- …
