1,036 research outputs found

    Like Sign Dilepton Signature for R-Parity Violating SUSY Search at the Tevatron Collider

    Get PDF
    The like sign dileptons provide the most promising signature for superparticle search in a large category of RR-parity violating SUSY models. We estimate the like sign dilepton signals at the Tevatron collider, predicted by these models, over a wide region of the MSSM parameter space. One expects an unambiguous signal upto a gluino mass of 200−300200 - 300 GeV (≄500\geq 500 GeV) with the present (proposed) accumulated luminosity of ∌0.1 (1) fb−1\sim 0.1~(1)~{\rm fb}^{-1}.Comment: 12 page LaTeX file; 5 figures available upon request from the autho

    Constraints on the Charged Higgs Sector from the Tevatron Collider Data on Top Quark Decay

    Get PDF
    The top quark data in the lepton plus τ\tau channel offers a viable probe for the charged Higgs boson signal. We analyse the recent Tevatron collider data in this channel to obtain a significant limit on the H±H^\pm mass in the large tan⁥ÎČ\tan\beta region.Comment: 8 pages, LaTeX file; 2 figures included (PS files

    Stress effects in structure formation

    Get PDF
    Residual velocity dispersion in cold dark matter induces stresses which lead to effects that are absent in the idealized dust model. A previous Newtonian analysis showed how this approach can provide a theoretical foundation for the phenomenological adhesion model. We develop a relativistic kinetic theory generalization which also incorporates the anisotropic velocity dispersion that will typically be present. In addition to density perturbations, we consider the rotational and shape distortion properties of clustering. These quantities together characterize the linear development of density inhomogeneity, and we find exact solutions for their evolution. As expected, the corrections are small and arise only in the decaying modes, but their effect is interesting. One of the modes for density perturbations decays less rapidly than the standard decaying mode. The new rotational mode generates precession of the axis of rotation. The new shape modes produce additional distortion that remains frozen in during the subsequent (linear) evolution, despite the rapid decay of the terms that caused it.Comment: significantly improved discussion of kinetic theory of CDM velocity dispersion; to appear Phys. Rev.

    WISP genes are members of the connective tissue growth factor family that are up-regulated in Wnt-1-transformed cells and aberrantly expressed in human colon tumors

    Get PDF
    Wnt family members are critical to many developmental processes, and components of the Wnt signaling pathway have been linked to tumorigenesis in familial and sporadic colon carcinomas. Here we report the identification of two genes, WISP-1 and WISP-2, that are up-regulated in the mouse mammary epithelial cell line C57MG transformed by Wnt-1, but not by Wnt-4. Together with a third related gene, WISP-3, these proteins define a subfamily of the connective tissue growth factor family. Two distinct systems demonstrated WISP induction to be associated with the expression of Wnt-1. These included (i) C57MG cells infected with a Wnt-1 retroviral vector or expressing Wnt-1 under the control of a tetracyline repressible promoter, and (ii) Wnt-1 transgenic mice. The WISP-1 gene was localized to human chromosome 8q24.1-8q24.3. WISP-1 genomic DNA was amplified in colon cancer cell lines and in human colon tumors and its RNA overexpressed (2- to >30-fold) in 84% of the tumors examined compared with patient-matched normal mucosa. WISP-3 mapped to chromosome 6q22-6q23 and also was overexpressed (4- to >40-fold) in 63% of the colon tumors analyzed. In contrast, WISP-2 mapped to human chromosome 20q12-20q13 and its DNA was amplified, but RNA expression was reduced (2- to >30-fold) in 79% of the tumors. These results suggest that the WISP genes may be downstream of Wnt-1 signaling and that aberrant levels of WISP expression in colon cancer may play a role in colon tumorigenesis

    Singular Short Range Potentials in the J-Matrix Approach

    Full text link
    We use the tools of the J-matrix method to evaluate the S-matrix and then deduce the bound and resonance states energies for singular screened Coulomb potentials, both analytic and piecewise differentiable. The J-matrix approach allows us to absorb the 1/r singularity of the potential in the reference Hamiltonian, which is then handled analytically. The calculation is performed using an infinite square integrable basis that supports a tridiagonal matrix representation for the reference Hamiltonian. The remaining part of the potential, which is bound and regular everywhere, is treated by an efficient numerical scheme in a suitable basis using Gauss quadrature approximation. To exhibit the power of our approach we have considered the most delicate region close to the bound-unbound transition and compared our results favorably with available numerical data.Comment: 14 pages, 5 tables, 2 figure

    Linking working memory and long-term memory: A computational model of the learning of new words

    Get PDF
    The nonword repetition (NWR) test has been shown to be a good predictor of children’s vocabulary size. NWR performance has been explained using phonological working memory, which is seen as a critical component in the learning of new words. However, no detailed specification of the link between phonological working memory and long-term memory (LTM) has been proposed. In this paper, we present a computational model of children’s vocabulary acquisition (EPAM-VOC) that specifies how phonological working memory and LTM interact. The model learns phoneme sequences, which are stored in LTM and mediate how much information can be held in working memory. The model’s behaviour is compared with that of children in a new study of NWR, conducted in order to ensure the same nonword stimuli and methodology across ages. EPAM-VOC shows a pattern of results similar to that of children: performance is better for shorter nonwords and for wordlike nonwords, and performance improves with age. EPAM-VOC also simulates the superior performance for single consonant nonwords over clustered consonant nonwords found in previous NWR studies. EPAM-VOC provides a simple and elegant computational account of some of the key processes involved in the learning of new words: it specifies how phonological working memory and LTM interact; makes testable predictions; and suggests that developmental changes in NWR performance may reflect differences in the amount of information that has been encoded in LTM rather than developmental changes in working memory capacity. Keywords: EPAM, working memory, long-term memory, nonword repetition, vocabulary acquisition, developmental change

    A new approach to the exact solutions of the effective mass Schrodinger equation

    Get PDF
    Effective mass Schrodinger equation is solved exactly for a given potential. Nikiforov-Uvarov method is used to obtain energy eigenvalues and the corresponding wave functions. A free parameter is used in the transformation of the wave function. The effective mass Schrodinger equation is also solved for the Morse potential transforming to the constant mass Schr\"{o}dinger equation for a potential. One can also get solution of the effective mass Schrodinger equation starting from the constant mass Schrodinger equation.Comment: 14 page

    Charged Higgs Boson Search at the Tevatron Upgrade Using Tau Polarization

    Get PDF
    We explore the prospect of charged Higgs boson search in top quark decay at the Tevatron collider upgrade, taking advantage of the opposite states of τ\tau polarization resulting from the H±H^\pm and W±W^\pm decays. Methods of distinguishing the two contributions in the inclusive 1-prong hadronic decay channel of τ\tau are suggested. The resulting signature and discovery limit of H±H^\pm are presented for the Tevatron upgrade as well as the Tevatron⋆^\star and the Ditevatron options.Comment: 19 pages LaTeX + 6 figures (available on request

    Accelerating Universes in String Theory via Field Redefinition

    Full text link
    We study cosmological solutions in the effective heterotic string theory with αâ€Č\alpha'-correction terms in string frame. It is pointed out that the effective theory has an ambiguity via field redefinition and we analyze generalized effective theories due to this ambiguity. We restrict our analysis to the effective theories which give equations of motion of second order in the derivatives, just as "Galileon" field theory. This class of effective actions contains two free coupling constants. We find de Sitter solutions as well as the power-law expanding universes in our four-dimensional Einstein frame. The accelerated expanding universes are always the attractors in the present dynamical system.Comment: 22 pages, 3 figures, some additional formulae adde
    • 

    corecore