372 research outputs found

    Recent Decisions

    Get PDF
    Many inverse problems can be described by a PDE model with unknown parameters that need to be calibrated based on measurements related to its solution. This can be seen as a constrained minimization problem where one wishes to minimize the mismatch between the observed data and the model predictions, including an extra regularization term, and use the PDE as a constraint. Often, a suitable regularization parameter is determined by solving the problem for a whole range of parameters -- e.g. using the L-curve -- which is computationally very expensive. In this paper we derive two methods that simultaneously solve the inverse problem and determine a suitable value for the regularization parameter. The first one is a direct generalization of the Generalized Arnoldi Tikhonov method for linear inverse problems. The second method is a novel method based on similar ideas, but with a number of advantages for nonlinear problems

    Algorithm for the reconstruction of dynamic objects in CT-scanning using optical flow

    Full text link
    Computed Tomography is a powerful imaging technique that allows non-destructive visualization of the interior of physical objects in different scientific areas. In traditional reconstruction techniques the object of interest is mostly considered to be static, which gives artefacts if the object is moving during the data acquisition. In this paper we present a method that, given only scan results of multiple successive scans, can estimate the motion and correct the CT-images for this motion assuming that the motion field is smooth over the complete domain using optical flow. The proposed method is validated on simulated scan data. The main contribution is that we show we can use the optical flow technique from imaging to correct CT-scan images for motion

    Initialization of lattice Boltzmann models with the help of the numerical Chapman-Enskog expansion

    Get PDF
    We extend the applicability of the numerical Chapman-Enskog expansion as a lifting operator for lattice Boltzmann models to map density and momentum to distribution functions. In earlier work [Vanderhoydonc et al. Multiscale Model. Simul. 10(3): 766-791, 2012] such an expansion was constructed in the context of lifting only the zeroth order velocity moment, namely the density. A lifting operator is necessary to convert information from the macroscopic to the mesoscopic scale. This operator is used for the initialization of lattice Boltzmann models. Given only density and momentum, the goal is to initialize the distribution functions of lattice Boltzmann models. For this initialization, the numerical Chapman-Enskog expansion is used in this paper.Comment: arXiv admin note: text overlap with arXiv:1108.491

    Projected Newton Method for noise constrained Tikhonov regularization

    Full text link
    Tikhonov regularization is a popular approach to obtain a meaningful solution for ill-conditioned linear least squares problems. A relatively simple way of choosing a good regularization parameter is given by Morozov's discrepancy principle. However, most approaches require the solution of the Tikhonov problem for many different values of the regularization parameter, which is computationally demanding for large scale problems. We propose a new and efficient algorithm which simultaneously solves the Tikhonov problem and finds the corresponding regularization parameter such that the discrepancy principle is satisfied. We achieve this by formulating the problem as a nonlinear system of equations and solving this system using a line search method. We obtain a good search direction by projecting the problem onto a low dimensional Krylov subspace and computing the Newton direction for the projected problem. This projected Newton direction, which is significantly less computationally expensive to calculate than the true Newton direction, is then combined with a backtracking line search to obtain a globally convergent algorithm, which we refer to as the Projected Newton method. We prove convergence of the algorithm and illustrate the improved performance over current state-of-the-art solvers with some numerical experiments

    Fast derivatives of likelihood functionals for ODE based models using adjoint-state method

    Full text link
    We consider time series data modeled by ordinary differential equations (ODEs), widespread models in physics, chemistry, biology and science in general. The sensitivity analysis of such dynamical systems usually requires calculation of various derivatives with respect to the model parameters. We employ the adjoint state method (ASM) for efficient computation of the first and the second derivatives of likelihood functionals constrained by ODEs with respect to the parameters of the underlying ODE model. Essentially, the gradient can be computed with a cost (measured by model evaluations) that is independent of the number of the ODE model parameters and the Hessian with a linear cost in the number of the parameters instead of the quadratic one. The sensitivity analysis becomes feasible even if the parametric space is high-dimensional. The main contributions are derivation and rigorous analysis of the ASM in the statistical context, when the discrete data are coupled with the continuous ODE model. Further, we present a highly optimized implementation of the results and its benchmarks on a number of problems. The results are directly applicable in (e.g.) maximum-likelihood estimation or Bayesian sampling of ODE based statistical models, allowing for faster, more stable estimation of parameters of the underlying ODE model.Comment: 5 figure

    A new level-dependent coarsegrid correction scheme for indefinite Helmholtz problems

    Full text link
    In this paper we construct and analyse a level-dependent coarsegrid correction scheme for indefinite Helmholtz problems. This adapted multigrid method is capable of solving the Helmholtz equation on the finest grid using a series of multigrid cycles with a grid-dependent complex shift, leading to a stable correction scheme on all levels. It is rigourously shown that the adaptation of the complex shift throughout the multigrid cycle maintains the functionality of the two-grid correction scheme, as no smooth modes are amplified in or added to the error. In addition, a sufficiently smoothing relaxation scheme should be applied to ensure damping of the oscillatory error components. Numerical experiments on various benchmark problems show the method to be competitive with or even outperform the current state-of-the-art multigrid-preconditioned Krylov methods, like e.g. CSL-preconditioned GMRES or BiCGStab.Comment: 21 page

    Numerically Stable Recurrence Relations for the Communication Hiding Pipelined Conjugate Gradient Method

    Full text link
    Pipelined Krylov subspace methods (also referred to as communication-hiding methods) have been proposed in the literature as a scalable alternative to classic Krylov subspace algorithms for iteratively computing the solution to a large linear system in parallel. For symmetric and positive definite system matrices the pipelined Conjugate Gradient method outperforms its classic Conjugate Gradient counterpart on large scale distributed memory hardware by overlapping global communication with essential computations like the matrix-vector product, thus hiding global communication. A well-known drawback of the pipelining technique is the (possibly significant) loss of numerical stability. In this work a numerically stable variant of the pipelined Conjugate Gradient algorithm is presented that avoids the propagation of local rounding errors in the finite precision recurrence relations that construct the Krylov subspace basis. The multi-term recurrence relation for the basis vector is replaced by two-term recurrences, improving stability without increasing the overall computational cost of the algorithm. The proposed modification ensures that the pipelined Conjugate Gradient method is able to attain a highly accurate solution independently of the pipeline length. Numerical experiments demonstrate a combination of excellent parallel performance and improved maximal attainable accuracy for the new pipelined Conjugate Gradient algorithm. This work thus resolves one of the major practical restrictions for the useability of pipelined Krylov subspace methods.Comment: 15 pages, 5 figures, 1 table, 2 algorithm
    • …
    corecore