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ABSTRACT

The results of an MHD stability analysis of different design configura-
tions for the NET tokamak is presented. The effect of shaping on a con-
figuration with a moderate aspect ratio A=3.7 and elongation E=2 was
investigated. The n=1 external kink stable operating windows in the
J—ds space have been determined at different values of B1, for two
values of the triangularity parameter & (0.25 and 0.4). BEquilibria have
been generated which have, respectively, n=1 external kink mode imposed
B limits of 7.6% and 7.9% or ballooning mode B limits of 8.5% and
7.8%, or that are both ballooning and kink stable at f=5.0% and 4.9%.
The configuration with 6=0.4 has only a slightly wider operating
window. A low aspect ratio configuration with A=1.67, E=1.68, and §=0.3
was also studied in a similar manner but in less detail. g limits of
9.6% for the kink, 9.4% for both kink and ballooning have been
obtained in this case. Finally, the problem of accessing the second
region of ballooning stability for a circular cross section tokamak
with A=3.7 was considered.
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A. INTRODUCTION

In this report, we concentrate on the investigation of the stable
operating windows of a moderate aspect ratio A=3.7 device with elonga-
tion E=2.0 and different triangularities, §=0.25 or 6=0.40 as a func-
tion of the plasma current, current profile, and of B, Such a con-
figuration could serve as a model for the Next European Torus (NET).
The stability of an alternate configuration, characterised by a low
aspect ratio A=1.67, E=1.68, and 6=0.30, is also investigated, but in
less detail. More specifically, the results that are presented identify
the n=1 external kink stability boundaries in the Jy—ds Space, where
Q labels the safety factor at the magnetic axis and qg labels the
safety factor at the plasma edge. The (dp/ds) plane is scanned by
varying the current and the current profile, which can be prescribed.
Different values of By are achieved by changing the pressure, which
can also be prescribed. The pressure profile can be altered to satisfy
the ballooning mode stability criterion. Finally, a circular cross sec—
tion tokamak with aspect ratio A=3.7 that accesses the second region of
ballooning stability is considered.

B. SHAPING EFFECTS
We first consider the effect of shaping on a moderate aspect ratio
A=3.7 tokamak with elongation E=2 by investigating its stability at

two values of the triangularity parameter: $=0.25 and §=0.40.

1. PARAMETRISATION OF THE EQUILIBRIA

The plasma-vacuum interface for the MHD equilibrium models under
consideration is represented by the expressions

¥ = R+ a cos (6+5sind) (1)

and z

H

E a sin s , ; (2)

where r is the distance of any boundary point from the major axis and z
is its distance fram the midplane. The plasma shape is determined by
the major radius R, the minor radius a, the elongation E, and the tri-
angularity &. The area S of the plasma cross-section is given by



S =2nEa’ J1(8)

(3)

where J; is a Bessel function of the first kind. 1Increasing the

triangularity reduces the plasma cross-section.

The average toroidal plasma current density within a poloidal
magnetic flux surface ¢ is defined as

2n 2% > >
IW) = — [ de /G(3-v¢) (4)
with
2n

Vi) = 2n [ de /g/x

where j is the plasma current density, vg is the Jacobian, and 6 and ¢
are the poloidal and toroidal angles, respectively. The total current
then is

I=1_ [3() V() dg.
27

Throughout this report, the current will be expressed in
dimensionless form

H

lJ'O
== (5)
(o]

where B, is the value of the vacuun field at R and all quantities on
the right hand side are in mks units.

The equilibria are camputed using a modified version of the EQLAUS
equilibriun code that allows us to prescribe together with p'(¢) the
J(¢) profile instead of the covariant toroidal magnetic field T(¢) or
the safety factor profile q(¢) that have characterised most previous
stability investigations of tokamak devices. This procedure is better
suited for optimisation studies.! The J(¢) profile is given by
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quadratic function 0 < ¢ < dy
J() = cubic function ¢a < ¢ < d’b (6)
0 "’b < ¢ < bg

vhere ¢ is set to zero at the magnetic axis, ¢g is the value of ¢ at
the plasma-vacuum interface, and the values of ¢a and ¢p are free
paraneters. The polynomials are chosen such that J(¢) and its first
derivative are continwus in ¢5 and ¢p. To reduce the number of
free parameters ¢p-¢5 1is kept constant at 0.2 ¢s. In the central
region J(¢) is generally adjusted to keep the g profile flat. This
condition has been relaxed in a few runs in order to introduce a small
shear in the central region. The runs will be clearly identified.

Initially, the pressure gradient profile p’(¢) is also chosen such
that its radial derivative is continuous and piecewise smooth, namely

0 0 < ¢ < ¢
p (¢) = cubic function dbe € ¢ < dg (7)
quadratic function dg € ¢ < ¢g

where p“(¢g) is a maximum. The quadratic and cubic functions may
thus be uniquely determined by imposing the values of P (¢g) and
P (¢g) . In the calculations that have been performed for the n=1 kink
stability, we have fixed the value of g1, defined as

St | ms | (8)

P1 = 2
ol

and imposed ¢g=¢p and ¢~¢z. With the further condition that
J°(0)=3"(¢5)=0, we obtain a "rounded step" current profile, with the
peak of the pressure gradient coinciding with the point at which J(¢)
vanishes. However, in the ballooning modes study, the parametrisation
of the pressure is relaxed by an equilibrium code that tailors the
pressure profile so that p'(¢) satisfies the conditions of marginal
stability to ballooning and Mercier modes on every ¢-surface.

A more precise and detailed description of the toroidal current
and pressure profiles and the philosophy that underlies the specific
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foms that are chosen for these profiles can be found in Turnbull et
1
al.

2. RESULTS

First we present the stability boundaries for the free boundary
n=1_kink mode in the (qy,Js) space obtained using the ERATO stability
code, from sequences of equilibria with the same current profile but
varying total current. Such a sequence is described in Fig. 1, where
the average plasma current density and pressure profiles are plotted,
as well as the g-profiles corresponding to different values of the to—
tal current. Marginal stability is set at y2 ~ 1074, where Y is the
instability growth rate normalized to an Alfvén transit time across the

major radius. The density is kept constant. The results are summarized
in Figs. 2 to 7.

Figure 2 shows the lowest part of the stability diagrams of the
6=0.25 configuration for 4 values of By in the (%,9s) space. The
short dashed line connects points of constant total current and varying
current profile; B remains almost constant on these lines. A long
dashed line in the B1=0 diagram corresponds to a fixed current pro—
file equilibrium sequence. Two features emerge from the comparison with
the standard stability diagram of a large aspect ratio circular cross-
section Tokamak: first, gg=2 is the low q limit at Br=0 but it
increases as By increases while in the circular case it is at gg=2
and independent of B; secondly, the stability window in Q@ is
narrower than in the circular case and it narrows very rapidly as Bt
increases. The fact that the stable region closes from the high D
side while the low g, side remains at q, ~ 1 is one feature which
appears to be very general.

The same optimisation has been repeated for §=0.40 and the results
are shown in Fig. 3. There is surprising little difference in the shape
and size of the stable regions. As § increases from 0.25 to 0.40 the
maximum current increases by about 10% while the width of the stable
region in q, is only slightly increased.
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In order to assess their impact on the NET design parameters, we
have redrawn the operating windows for g1=0.70, 0,95 and 1.20 shown
in Figs. 2 and 3 in the (g,,qy) space (Fig. 4), where g is the
cylindrical q defined as

28 S
9 = b IR @R (9)

which can be rewritten with eq. 3 for the cross-sectional area as:

J,(8)
S E
qp = 4n — (AIN) (10)

Figure 4 does not show the strong influence on & that is expected

fram previous studies.?

There is only a slightly larger stability
window at high By. Note that Qi is substantially below 2 rising

almost proportionally to By in the range of By considered.

The B1=0 eigenstructures for equilibria with 6=0.4 at three
unstable points of Fig. 3 are displayed in Figs. 5, 6 and 7. ‘The flow
pattern in Fig. 5 corresponds to an equilibrium with qp<1 and gg>2
and is typical of an n=1 toroidal kink.} The equilibrium in Fig. 6 has
1.0<q;<1.5 and 9«2 and the flow pattern corresponds to an m=2, n=1
external kink mode. The third equilibrium, shown in Fig. 7, is strongly
unstable and lies in the region 1.35¢qy<2 and gg<3. The eigen-
structure observed is more or less characteristic of an m=2, n=1 mode
with activity localised around the g=2 surface.

We have also performed randam checks for the n=2 kink mode at
B1=0.95 for both triangularities. This does not seem to noticeably
alter the stability damain.

The highest values for the n=1 kink mode imposed B limit that we
have obtained by scanning the (q;,qs) plane at fixed values of B1

are p=7.6% for 6=0.25 at Br=1.2 and I=2.33, and B=7.9% for 6=0.4 at
the same 1 and 1=2.37. In Fig. 10, labeled as kink, the results
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shown in Figs. 2 nd 3 are cross-plotted in the (B/%p) plane. The
maximum value of B is not well determined because of the narrowness in
QG of the operating region. Compared to the optimisation we have done
for NET' and JET® these stabil ity windows are much more narrow but the
maximum values of B are higher than those found in these studies at the
same normalized current Iy. There is no evidence of a dependence on
the triangularity for these high current, low qr configurations.

The equilibria described so far are ballooning unstable in the
edge regions at g much below the maximum kink stable g, and Mercier
unstable in the low shear region where the current density just starts
to drop. We have optimized some of these equilibria using a code
developed by A. Roy, which cambines EQIAUS and ERATO, and which adjusts
iteratively the pressure profile until p'(¢) satisfies the ballooning
and Mercier marginal stability criteria on every ¢~surface, keeping the
current density J(¢) unchanged. The kink stability is not much affected
since q, does not change much and this small change can be
accanmodated with a slight change of the current width. The result is a
sharp decrease of 8 by 30-40%. The introduction of a small amount of
shear in the central region has been found to improve the ballooning
limit. An example of such an equilibria is shown in Fig. 9 which is
fully stable at g=5%. Note that there is little pressure gradient in
the region J#0. There has not been an extensive study to optimize the
current profile. The reason for the improvement of B is not obvious:
The shear in the edge region has been slightly reduced which is
expected to reduce rather than increase the g in the first region of
stability and there is too little shear in the central region to make a
measurable contribution to the B. It may be the same effect as found by
C.M. Bishop et al.®, namely that J#0 in the outer region increases the
ballooning limit.

The same ballooning optimisation has ben repeated for the same
current profiles as for the n=1 optimisation, with a slight adjustment
in the central region when found profitable. The result is shown in
Figs. 10 and 11. Compared to the n=1 kink limit the balloning limit is
reduced suwbstantially. For this class of equilibria the ballooning

criterion is more stringent than the kink limit.
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Figure 11 shows that the g limit obtained is as good as could be
expected but the linear dependence on Iy is not correct in this range
of current.

Since a wider current profile is good for ballooning stability we
have made some attempts at improving the ballooning limit by increas-
ing g, at reduced current to obtain steep g profiles at the edge. For
6=0.25 and 0.4 we have obtained ballooning stable equilibria with
B=8.5% and 7.8% respectively at the same nommalized current Iyn=1.85.
Figure 12 shows the profiles of current density, pressure and safety
factor for the first of these equilibria. This optimisation shows again
a surprising lack of sensitivity of the limiting B on triangularity.

3. CONCLUSIONS

For reference we note that the NET extended configuration with
I=15MA, B=4.8T, R=5.2m, a=1.70m has a nomalized current of IN=2.30
which falls in the range of values studied. The stability analysis
presented shows that at such a current the plasma can be stable to the
n=1 external kink up to B of the order of 7%, but the operating range
is becoming very narrow in q, at high g. Ballooning stability appears
to be more stringent, limiting g to less than 5%, but this may not be
the final answer as there appears possible to make same trade off bet-
ween the n=1 kink limit and the ballooning limit by widening the
current profile, keeping q, constant. Another possibility would be to
introduce a higher multipolar deformation of the surface which could
increase the ballooning limit, since the pressure gradient is concen-
trated at the edge and sensitive to the shape of the surface, without
affecting the kink limit.

The lack of sensitivity of the B limit on the triangularity is
surprising and more stulies over a wider damain are clearly needed. The
insensitivity of Bpax on the current Iy is also surprising and the
range of Iy should be extended. ILower Iy implies higher gg which
makes such studies very difficult and costly because of the high reso-
lution needed in ERATO.
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C. LOW ASPECT RATIO CONFIGURATION

We now investigate the stability properties of a low aspect ratio
configuration, in the same way as in the preceding section, but in less

detail. This configuration is characterized by A=1.67, E=1.68, and
6=0.30.

RESULTS

The n=1 kink mode stability boundaries for the low aspect ratio
design are displayed in Fig. 13 (at zero B1) (at B1=0.35). 'The
stable damains in both cases have the shape of two stalactites with a
weakly unstable stalagmite wedged in between, and centered at g;=1.05.
This unstable wedge is due to off-resonant m=1 modes driven by the
toroidal coupling in the low shear region of the plasma. These modes do
not appear for A=3.7, since the toroidal coupling is weaker. They are
stabilized by increasing the shear near the magnetic axié. This can be
achieved (as mentioned earlier) by peaking the current density profile
at the center and rounding off its edge. As previously seen, we also
find that increasing By raises the smallest stable qg, and reduces
the stable damain.

The highest value found for the n=1 kink imposed B limit was 9.6%,
at Iy=5.73. With the ballooning optimisation code, we have obtained a
promising equilibrium that is characterised by a peaked pressure
profile. It can be used to generate a sequence of different equilibria
at different currents. At IN=3.67, the equilibrium is both kink and
ballooning stable with p=9.4% (c.f. Fig. 14). Due to the peaked
pressure profile, it is Mercier unstable in a very small region around
the magnetic axis. However, this region is so amall that one should
achieve stability without affecting B by shaving off the pressure
profile in this region. These results are included in Table 1.

The operating window shown in Fig. 13 has been redrawn in gy—qrg
space (Fig. 15). In this case qmMin={,1, fThis decrease in the value

of gmin must be a consequence of the low aspect ratio.
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D. SECOND BALIOONING STABLE REGIME

Circular cross section Tokamak with aspect ratio 3.7 that access
the second stable region of ballooning modes are investigated in this
section. The MHD equilibria are obtained with the VMEC inverse moments
equilibrium code,’ and mapped to straight magnetic field line coordi-
nates for the ballooning stability analysis. The safety factor profile
is parametrised by 1/q=1/q0+(1/qs-1/q0)<I>L’, where & is the toroidal
magnetic flux function. The example we investigate has qp=1.25,
9s=3.846 and is shown in Fig. 16. Flux conserving sequences of equi-
libria are obtained that attempt to optimise the pressure profile to
achieve marginal stability conditions to ballooning modes on all the
flux surfaces. The pressure profile for a case with p=7.15% is shown in
Fig. 17. The surfaces with #<0.3 and &30.6 are marginally stable. How-
ever, for 0.3<¢<0.6 the plasma is strongly stable in the second
regime.The stability properties of the B=7.15% equilibrium we have
generated are insensitive to variation of the radial wave number
because the second stable region, as well as the inner first stable
region, are within the damain of weak global shear. Increasing the
pressure gradient further in the stable daomain causes the inner second
stable surfaces to return back into the first stability region. On the
other hand, surfaces in the vicinity of the outer boundary of the
second stable region that were previously marginal became strongly
stable and incorporated in that damain. As a consequence, a higher
value of B is obtained. However, for B values in excess of the 7.15% we
have reported, we have experienced convergence problems with the
equilibriun calculation that result from the large local change of
pressure gradient near the second stable region inner and outer
boundaries that cannot be adequately resolved with the 41 point radial
mesh we have utilised. It should be noted that a similar calculation
with ¢=1.05 failed to produce a fully stable plasma with p>4%.
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FIGIRE CAPTIONS

Fig. 1:

Fig. 2:

Fig. 3:

Fig. 4:

Fig. 5:

Fig. 6:

The average plasma current density, safety factor q, and
pressure profiles with ¢5/¢s=0.60 and op/bs=0.80 from
a typical equilibrium at B1=0.70 for 6&=0.40, E=2.00 and
A=3.7. The equilibrium is characterised by the normalised
current In=2.59, B=5.3% and (dp, qag)=(0.954, 2.98). It
is marginally stable to the n=1 kink mode. The segments in
the top right hand corner indicate the surfaces which are
ballooning or Mercier unstable. Also plotted are the g-pro-
files corresponding to equilibria fram the same sequence
obtained for In=2.04 and INF1.67.

The n=1 stability boundaries in the (dp,9s) space for a
configuration with §=0.25, E=2.0 and A=3.7 (solid curve) and
increasing B ¢ 0, 0.7, 0.95 and 1.20. 'The long dashed
lines at Br=0 identify sequences of equilibria with fixed
average current density profile. The short dashed lines
connect points that have the same normalised total current

Ine

The n=1 stability boundaries in the (dp/9s) space for a
configuration with 6=0.40, E=2.0 and A=3.7 (solid curve) for
the same values of gy = 0, 0.7, 0.95 and 1.20 as in Fig. 2.

The stability boundaries in the (do,91) space at B1=0.70,
0.95 and 1.20 for configurations with A=3.7, E=2.00, and
$=0.4 (dashed curves) or §=0.25 (solid curves) ,

The n=1 instability flow pattern in a configuration with
E=2.0, A=3.7, 6=0.4 and B=0. The equilibrium state has
%=0.92 and gg=3.14.

The n=1 instability flow pattern in a configuration with
E=2.0, 2=3.7, 6=0.4 and B=0. The equilibriun state has
P=1.23 and gs=1.99.



Fig. 7:

Fig. 8:

Fig. 9:

Fig. 10:

Fig. 11:

Fig., 12:
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The n=1 instability flow pattern in a configuration with
E=2.0, A=3.7, 6=0.4 and B=0. The equilibriun state has
Jo=1.37 and gg=2.27,

The average plasma current density, pressuwre and safety
factor profiles for an n=1 kink stable equilibrium with
6=0.4, E=2.00, A=3.7 and IN2.37 at B1=1.20. This
equilibrium is characterised by qg;=1.0, ds=3.47, and yields
B=7.9%. The ballooning and Mercier unstable surfaces are
indicated by the segment in the top right hand side.

The average plasma current density, pressure and safety fac-
tor profiles for a stable equilibrium to both kink and bal-
looning, with 6=0.25, E=2.00, A=3.7, IN=2.00 at B7=1.06.
This equilibrium is characterised by 9¢=0.97, 9s=3.70, and
has $=5.0%. In this case, the current profile is slightly
peaked at the magnetic axis.

The B stable windows at currents IN=2.22 (top), InN=2.405,
(middle), and IN=2.59 (bottom), for configurations with
A=3.7, E=2.00, and 6=0.25 (LHS) or 6=0.4 (RES). The dashed
line indicates the n=1 kink imposed limits. The continuous
line indicates the ballooning imposed limits.

The average plasma current density, pressure and safety fac-
tor profiles for a ballooning stable (but n=1 kink unstabl e)
equilibriun with §=0.25, E=2.0, A=3.7, IN=1.85 and
Br=1.98. This equilibrium is characterised by do=1.56,
ds=3.56, and yields p=8.5%.

The limiting values of B as a function of Iy for two
configurations with E<2.00, A=3.70 and different triangulari-
ties: 6=0.25 and §=0.40. The crosses indicate the values that
are stable to the n=1 kink only and the asterisks indicate
values that are stable to both kink and ballooning.
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Fig. 14:

Fig. 153

Fig. 16:

Fig. 17:
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Te B1=0, B71=0.35 1<l stability boundaries in the
(9 ,dg) space for a configuration with &=0.30, E=1.68 and
A=1.67 (solid curve). The short dashed lines connect points
that have the same nommalised current Iy. The dashed-dotted

lines surround a weakly unstable area.

The average plasma current density, pressure and safety
factor profiles for a ballooning and n=1 kink stable equilib-
riun with 6=0.30, E=1.68, A=1.67, IN=3.67 and B1=0.613.
Tis equilibrium is characterised by dgg=1.19, ds=4.9, and
yields p=9.4%. The plasma is weakly Mercier unstable in a
snall region ¢/¢g<0.01.

Te B1=0.35 n=1 stability boundary in the (qg,dy) space
for the same configuration as in Fig. 13: 6=0.30, E=1.68 and
A=1.67 (solid curve).

The dependence of the safety factor q on the toroidal flux &,
assuned in the study of the second ballooning stable regime
for a circular cross-section device with A=3.7.

Pressure profile of a ballooning stable equilibrium that has
p=7.15% for a circular cross-section device with A=3.7. The
region within 0.30<2<0.60 lies in the second stable regime.
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