22 research outputs found

    Ocean warming threatens southern right whale population recovery

    Get PDF
    Funding: This work was supported by CAPES doctoral scholarship (M.A.), CAPES-PRINT grant 88887.370641/2019-00 (M.A.), CNPQ research grant 305573/2013-6 (P.C.S.-L.), and CNPQ research grant 407190/2012-0 (F.G.D.-J.). Funding for aerial surveys since 1971 was provided by numerous donors through Ocean Alliance and Instituto de Conservación de Ballenas such as Wildlife Conservation Society, National Geographic Society, World Wildlife Fund, Alfredo Fortabat Foundation, Turner Foundation, Canadian Whale Institute, I. Kerr, A. L. de Fortabat, S. Haney, A. and J. Moss, A. Morse, P. Singh, P. Logan, N. Griffis, and C. Walcott.Whales contribute to marine ecosystem functioning, and they may play a role in mitigating climate change and supporting the Antarctic krill (Euphausia superba) population, a keystone prey species that sustains the entire Southern Ocean (SO) ecosystem. By analyzing a five-decade (1971–2017) data series of individual southern right whales (SRWs; Eubalaena australis) photo-identified at Península Valdés, Argentina, we found a marked increase in whale mortality rates following El Niño events. By modeling how the population responds to changes in the frequency and intensity of El Niño events, we found that such events are likely to impede SRW population recovery and could even cause population decline. Such outcomes have the potential to disrupt food-web interactions in the SO, weakening that ecosystem’s contribution to the mitigation of climate change at a global scale.Publisher PDFPeer reviewe

    Between a Rock and a Hard Place: Habitat Selection in Female-Calf Humpback Whale (Megaptera novaeangliae) Pairs on the Hawaiian Breeding Grounds

    Get PDF
    The Au'au Channel between the islands of Maui and Lanai, Hawaii comprises critical breeding habitat for humpback whales (Megaptera novaeangliae) of the Central North Pacific stock. However, like many regions where marine mega-fauna gather, these waters are also the focus of a flourishing local eco-tourism and whale watching industry. Our aim was to establish current trends in habitat preference in female-calf humpback whale pairs within this region, focusing specifically on the busy, eastern portions of the channel. We used an equally-spaced zigzag transect survey design, compiled our results in a GIS model to identify spatial trends and calculated Neu's Indices to quantify levels of habitat use. Our study revealed that while mysticete female-calf pairs on breeding grounds typically favor shallow, inshore waters, female-calf pairs in the Au'au Channel avoided shallow waters (<20 m) and regions within 2 km of the shoreline. Preferred regions for female-calf pairs comprised water depths between 40–60 m, regions of rugged bottom topography and regions that lay between 4 and 6 km from a small boat harbor (Lahaina Harbor) that fell within the study area. In contrast to other humpback whale breeding grounds, there was only minimal evidence of typical patterns of stratification or segregation according to group composition. A review of habitat use by maternal females across Hawaiian waters indicates that maternal habitat choice varies between localities within the Hawaiian Islands, suggesting that maternal females alter their use of habitat according to locally varying pressures. This ability to respond to varying environments may be the key that allows wildlife species to persist in regions where human activity and critical habitat overlap

    Incorporating non-equilibrium dynamics into demographic history inferences of a migratory marine species

    Get PDF
    ELC was supported while writing this paper by a EU Horizon 2020 Marie Slodowska Curie Fellowship, project BEHAVIOUR-CONNECT, by a Newton Fellowship from the Royal Society of London and Bayesian statistical training was supported by National Science Foundation (award DEB- 1145200). Laboratory analyses conducted by ELC were funded by a small grant from the British Ecological Society 5076 / 6118 and Bayesian analysis was supported by training from the National Science Foundation under Grant No. DEB-1145200. OEG was supported by the Marine Alliance for Science and Technology for Scotland (MASTS) funded by the Scottish Founding Council (grant reference HR09011). Genetic data from the South African right whale samples were generated by MB and PJP with the support of UC Berkeley, University of Stockholm and University of Groningen. Computational Biology analyses were supported by the University of St Andrews Bioinformatics Unit which is funded by a Wellcome Trust ISSF award.Understanding how dispersal and gene flow link geographically separated populations over evolutionary history is challenging, particularly in migratory marine species. In southern right whales (SRWs, Eubalaena australis), patterns of genetic diversity are likely influenced by the glacial climate cycle and recent history of whaling. Here we use a dataset of mitochondrial DNA (mtDNA) sequences (n=1,327) and nuclear markers (17 microsatellite loci, n=222) from major wintering grounds to investigate circumpolar population structure, historical demography, and effective population size. Analyses of nuclear genetic variation identify two population clusters that correspond to the South Atlantic and Indo-Pacific ocean basins that have similar effective breeder estimates. In contrast, all wintering grounds show significant differentiation for mtDNA, but no sex-biased dispersal was detected using the microsatellite genotypes. An approximate Bayesian computation (ABC) approach with microsatellite markers compared scenarios with gene flow through time, or isolation and secondary contact between ocean basins, while modeling declines in abundance linked to whaling. Secondary-contact scenarios yield the highest posterior probabilities, implying that populations in different ocean basins were largely isolated and came into secondary contact within the last 25,000 years, but the role of whaling in changes in genetic diversity and gene flow over recent generations could not be resolved. We hypothesis that these findings are driven by factors that promote isolation, such as female philopatry, and factors that could promote dispersal, such oceanographic changes. These findings highlight the application of ABC approaches to infer connectivity in mobile species with complex population histories and currently low levels of differentiation.PostprintPeer reviewe

    Effect of kelp gull harassment on southern right whale calf survival: a long-term capture–recapture analysis

    No full text
    Kelp gulls (Larus dominicanus) commonly feed on the skin and blubber of surfacing southern right whales (SRW, Eubalaena australis) in the near shore waters of Península Valdés (PV), Argentina. Mothers and especially calves respond to gull attacks by changing their swimming speeds, resting postures and overall behaviour. Gull-inflicted wounds per calf have increased markedly since the mid-1990s. Unusually high mortality of young calves occurred locally after 2003, and increasing evidence points to gull harassment as a factor contributing to the excess deaths. After leaving PV, calves undertake a long migration with their mothers to summer feeding areas; their health during this strenuous exertion is likely to affect their probabilities of first-year survival. To explore the effects of gull-inflicted wounds on calf survival, we analysed 44 capture–recapture observations between 1974 and 2017, for 597 whales photo-identified in their years of birth between 1974 and 2011. We found a marked decrease in first-year survival associated with an increase in wound severity over time. Our analysis supports recent studies indicating that gull harassment at PV may impact SRW population dynamics

    Stable isotopes indicate population structuring in the Southwest Atlantic population of right whales (Eubalaena australis)

    Get PDF
    From the early 17th century to the 1970s southern right whales, Eubalaena australis, were subject to intense exploitation along the Atlantic coast of South America. Catches along this coast recorded by whalers originally formed a continuum from Brazil to Tierra del Fuego. Nevertheless, the recovery of the population has apparently occurred fragmentarily, and with two main areas of concentration, one off southern Brazil (Santa Catarina) and another off central Argentina (Peninsula Valdés). This pattern suggests some level of heterogeneity amongst the population, which is apparently contradicted by records that traced individuals moving throughout the whole geographical extension covered by the species in the Southwest Atlantic. To test the hypothesis of the potential occurrence of discrete subpopulations exploiting specific habitats, we investigated N, C and O isotopic values in 125 bone samples obtained from whaling factories operating in the early 1970s in southern Brazil (n = 72) and from contemporary and more recent strandings occurring in central Argentina (n = 53). Results indicated significant differences between the two sampling areas, being δ13C and δ18O values significantly higher in samples from southern Brazil than in those from central Argentina. This variation was consistent with isotopic baselines from the two areas, indicating the occurrence of some level of structure in the Southwest Atlantic right whale population and equally that whales more likely feed in areas commonly thought to exclusively serve as nursing grounds. Results aim at reconsidering of the units currently used in the management of the southern right whale in the Southwest Atlantic Ocean. In the context of the current die-off affecting the species in Peninsula Valdés, these results also highlight the necessity to better understand movements of individuals and precisely identify their feeding areas
    corecore