134 research outputs found

    The distribution of transit durations for Kepler planet candidates and implications for their orbital eccentricities

    Get PDF
    ‘In these times, during the rise in the popularity of institutional repositories, the Society does not forbid authors from depositing their work in such repositories. However, the AAS regards the deposit of scholarly work in such repositories to be a decision of the individual scholar, as long as the individual's actions respect the diligence of the journals and their reviewers.’ Original article can be found at : http://iopscience.iop.org/ Copyright American Astronomical SocietyDoppler planet searches have discovered that giant planets follow orbits with a wide range of orbital eccentricities, revolutionizing theories of planet formation. The discovery of hundreds of exoplanet candidates by NASA's Kepler mission enables astronomers to characterize the eccentricity distribution of small exoplanets. Measuring the eccentricity of individual planets is only practical in favorable cases that are amenable to complementary techniques (e.g., radial velocities, transit timing variations, occultation photometry). Yet even in the absence of individual eccentricities, it is possible to study the distribution of eccentricities based on the distribution of transit durations (relative to the maximum transit duration for a circular orbit). We analyze the transit duration distribution of Kepler planet candidates. We find that for host stars with T > 5100 K we cannot invert this to infer the eccentricity distribution at this time due to uncertainties and possible systematics in the host star densities. With this limitation in mind, we compare the observed transit duration distribution with models to rule out extreme distributions. If we assume a Rayleigh eccentricity distribution for Kepler planet candidates, then we find best fits with a mean eccentricity of 0.1-0.25 for host stars with T ≤ 5100 K. We compare the transit duration distribution for different subsets of Kepler planet candidates and discuss tentative trends with planetary radius and multiplicity. High-precision spectroscopic follow-up observations for a large sample of host stars will be required to confirm which trends are real and which are the results of systematic errors in stellar radii. Finally, we identify planet candidates that must be eccentric or have a significantly underestimated stellar radius.Peer reviewedFinal Accepted Versio

    Kepler-22b: A 2.4 Earth-radius Planet in the Habitable Zone of a Sun-like Star

    Get PDF
    A search of the time-series photometry from NASA's Kepler spacecraft reveals a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626 with a period of 290 days. The characteristics of the host star are well constrained by high-resolution spectroscopy combined with an asteroseismic analysis of the Kepler photometry, leading to an estimated mass and radius of 0.970 +/- 0.060 MSun and 0.979 +/- 0.020 RSun. The depth of 492 +/- 10ppm for the three observed transits yields a radius of 2.38 +/- 0.13 REarth for the planet. The system passes a battery of tests for false positives, including reconnaissance spectroscopy, high-resolution imaging, and centroid motion. A full BLENDER analysis provides further validation of the planet interpretation by showing that contamination of the target by an eclipsing system would rarely mimic the observed shape of the transits. The final validation of the planet is provided by 16 radial velocities obtained with HIRES on Keck 1 over a one year span. Although the velocities do not lead to a reliable orbit and mass determination, they are able to constrain the mass to a 3{\sigma} upper limit of 124 MEarth, safely in the regime of planetary masses, thus earning the designation Kepler-22b. The radiative equilibrium temperature is 262K for a planet in Kepler-22b's orbit. Although there is no evidence that Kepler-22b is a rocky planet, it is the first confirmed planet with a measured radius to orbit in the Habitable Zone of any star other than the Sun.Comment: Accepted to Ap

    Shannon Information Theory and Molecular Biology

    Get PDF
    The role and the contribution of Shannon Information Theory to the development of Molecular Biology has been the object of stimulating debates during the last thirty years. This seems to be connected with some semantic charms associated with the use of the word \u201cinformation\u201d in the biological context. Furthermore information itself, if viewed in a broader perspective, is far from being completely defined in a fashion that overcomes the technical level at which the classical Information Theory has been conceived. This review aims at building on the acknowledged contribution of Shannon Information Theory to Molecular Biology, so as to discover if it is only a technical tool to analyze DNA and proteinic sequences, or if it can rise, at least in perspective, to a higher role that exerts an influence on the construction of a suitable model for handling the genetic information in Molecular Biology

    Currently legislated decreases in nitrogen deposition will yield only limited plant species recovery in European forests

    Get PDF
    Atmospheric nitrogen (N) pollution is considered responsible for a substantial decline in plant species richness and for altered community structures in terrestrial habitats worldwide. Nitrogen affects habitats through direct toxicity, soil acidification, and in particular by favoring fast-growing species. Pressure from N pollution is decreasing in some areas. In Europe (EU28), overall emissions of NO x declined by more than 50% while NH3 declined by less than 30% between the years 1990 and 2015, and further decreases may be achieved. The timescale over which these improvements will affect ecosystems is uncertain. Here we use 23 European forest research sites with high quality long-term data on deposition, climate, soil recovery, and understory vegetation to assess benefits of currently legislated N deposition reductions in forest understory vegetation. A dynamic soil model coupled to a statistical plant species niche model was applied with site-based climate and deposition. We use indicators of N deposition and climate warming effects such as the change in the occurrence of oligophilic, acidophilic, and cold-tolerant plant species to compare the present with projections for 2030 and 2050. The decrease in N deposition under current legislation emission (CLE) reduction targets until 2030 is not expected to result in a release from eutrophication. Albeit the model predictions show considerable uncertainty when compared with observations, they indicate that oligophilic forest understory plant species will further decrease. This result is partially due to confounding processes related to climate effects and to major decreases in sulphur deposition and consequent recovery from soil acidification, but shows that decreases in N deposition under CLE will most likely be insufficient to allow recovery from eutrophication

    Numerical analysis of forming processes

    No full text
    corecore