289 research outputs found

    Using joint species distribution modelling to predict distributions of seafloor taxa and identify vulnerable marine ecosystems in New Zealand waters

    Get PDF
    \ua9 The Author(s) 2024.Effective ecosystem-based management of bottom-contacting fisheries requires understanding of how disturbances from fishing affect seafloor fauna over a wide range of spatial and temporal scales. Spatial predictions of abundance for 67 taxa were developed, using an extensive dataset of faunal abundances collected using a towed camera system and spatially explicit predictor variables including bottom-trawl fishing effort, using a Joint Species Distribution Model (JSDM). The model fit metrics varied by taxon: the mean tenfold cross-validated AUC score was 0.70 \ub1 0.1 (standard deviation) for presence–absence and an R2 of 0.11 \ub1 0.1 (standard deviation) for abundance models. Spatial predictions of probability of occurrence and abundance (individuals per km2) varied by taxon, but there were key areas of overlap, with highest predicted taxon richness in areas of the continental shelf break and slope. The resulting joint predictions represent significant advances on previous predictions because they are of abundance, allow the exploration of co-occurrence patterns and provide credible estimates of taxon richness (including for rare species that are often not included in more commonly used single-species distribution modelling). Habitat-forming taxa considered to be Vulnerable Marine Ecosystem (VME) indicators (those taxa that are physically or functionally fragile to anthropogenic impacts) were identified in the dataset. Spatial estimates of likely VME distribution (as well as associated estimates of uncertainty) were predicted for the study area. Identifying areas most likely to represent a VME (rather than simply VME indicator taxa) provides much needed quantitative estimates of vulnerable habitats, and facilitates an evidence-based approach to managing potential impacts of bottom-trawling

    Deep-Sea Fish Distribution Varies between Seamounts: Results from a Seamount Complex off New Zealand

    Get PDF
    Fish species data from a complex of seamounts off New Zealand termed the “Graveyard Seamount Complex’ were analysed to investigate whether fish species composition varied between seamounts. Five seamount features were included in the study, with summit depths ranging from 748–891 m and elevation from 189–352 m. Measures of fish species dominance, rarity, richness, diversity, and similarity were examined. A number of factors were explored to explain variation in species composition, including latitude, water temperature, summit depth, depth at base, elevation, area, slope, and fishing effort. Depth at base and slope relationships were significant with shallow seamounts having high total species richness, and seamounts with a more gradual slope had high mean species richness. Species similarity was modelled and showed that the explanatory variables were driven primarily by summit depth, as well as by the intensity of fishing effort and elevation. The study showed that fish assemblages on seamounts can vary over very small spatial scales, in the order of several km. However, patterns of species similarity and abundance were inconsistent across the seamounts examined, and these results add to a growing literature suggesting that faunal communities on seamounts may be populated from a broad regional species pool, yet show considerable variation on individual seamounts

    Gravity-darkening Analysis of the Misaligned Hot Jupiter MASCARA-4 b

    Get PDF
    MASCARA-4 b is a hot Jupiter in a highly misaligned orbit around a rapidly rotating A3V star that was observed for 54 days by the Transiting Exoplanet Survey Satellite (TESS). We perform two analyses of MASCARA-4 b using a stellar gravity-darkened model. First, we measure MASCARA-4 b's misaligned orbital configuration by modeling its TESS photometric light curve. We take advantage of the asymmetry in MASCARA-4 b's transit due to its host star's gravity-darkened surface to measure MASCARA-4 b's true spin–orbit angle to be 104°+7°-13°. We also detect a ~4σ secondary eclipse at 0.491 ± 0.007 orbital phase, proving that the orbit is slightly eccentric. Second, we model MASCARA-4 b's insolation including gravity darkening and find that the planet's received X-ray and ultraviolet flux varies by 4% throughout its orbit. MASCARA-4 b's short-period, polar orbit suggests that the planet likely underwent dramatic orbital evolution to end up in its present-day configuration and that it receives a varying stellar irradiance that perpetually forces the planet out of thermal equilibrium. These findings make MASCARA-4 b an excellent target for follow-up characterization to better understand the orbital evolution and present-day environment of planets around high-mass stars

    Wanted dead or alive : high diversity of macroinvertebrates associated with living and ’dead’ Posidonia oceanica matte

    Get PDF
    The Mediterranean endemic seagrass Posidonia oceanica forms beds characterised by a dense leaf canopy and a thick root-rhizome ‘matte’. Death of P. oceanica shoots leads to exposure of the underlying matte, which can persist for many years, and is termed ‘dead’ matte. Traditionally, dead matte has been regarded as a degraded habitat. To test whether this assumption was true, the motile macroinvertebrates of adjacent living (with shoots) and dead (without shoots) matte of P. oceanica were sampled in four different plots located at the same depth (5–6 m) in Mellieha Bay, Malta (central Mediterranean). The total number of species and abundance were significantly higher (ANOVA; P<0.05 and P<0.01, respectively) in the dead matte than in living P. oceanica matte, despite the presence of the foliar canopy in the latter. Multivariate analysis (MDS) clearly showed two main groups of assemblages, corresponding to the two matte types. The amphipods Leptocheirus guttatus and Maera grossimana, and the polychaete Nereis rava contributed most to the dissimilarity between the two different matte types. Several unique properties of the dead matte contributing to the unexpected higher number of species and abundance of motile macroinvertebrates associated with this habitat are discussed. The findings have important implications for the conservation of bare P. oceanica matte, which has been generally viewed as a habitat of low ecological value.peer-reviewe

    Science Priorities for Seamounts: Research Links to Conservation and Management

    Get PDF
    Seamounts shape the topography of all ocean basins and can be hotspots of biological activity in the deep sea. The Census of Marine Life on Seamounts (CenSeam) was a field program that examined seamounts as part of the global Census of Marine Life (CoML) initiative from 2005 to 2010. CenSeam progressed seamount science by collating historical data, collecting new data, undertaking regional and global analyses of seamount biodiversity, mapping species and habitat distributions, challenging established paradigms of seamount ecology, developing new hypotheses, and documenting the impacts of human activities on seamounts. However, because of the large number of seamounts globally, much about the structure, function and connectivity of seamount ecosystems remains unexplored and unknown. Continual, and potentially increasing, threats to seamount resources from fishing and seabed mining are creating a pressing demand for research to inform conservation and management strategies. To meet this need, intensive science effort in the following areas will be needed: 1) Improved physical and biological data; of particular importance is information on seamount location, physical characteristics (e.g. habitat heterogeneity and complexity), more complete and intensive biodiversity inventories, and increased understanding of seamount connectivity and faunal dispersal; 2) New human impact data; these shall encompass better studies on the effects of human activities on seamount ecosystems, as well as monitoring long-term changes in seamount assemblages following impacts (e.g. recovery); 3) Global data repositories; there is a pressing need for more comprehensive fisheries catch and effort data, especially on the high seas, and compilation or maintenance of geological and biodiversity databases that underpin regional and global analyses; 4) Application of support tools in a data-poor environment; conservation and management will have to increasingly rely on predictive modelling techniques, critical evaluation of environmental surrogates as faunal “proxies”, and ecological risk assessment

    TOI 540 b: A Planet Smaller than Earth Orbiting a Nearby Rapidly Rotating Low-mass Star

    Get PDF
    We present the discovery of TOI 540 b, a hot planet slightly smaller than Earth orbiting the low-mass star 2MASS J05051443-4756154. The planet has an orbital period of P=1.239149P = 1.239149 days (±\pm 170 ms) and a radius of r=0.903±0.052REarthr = 0.903 \pm 0.052 R_{\rm Earth}, and is likely terrestrial based on the observed mass-radius distribution of small exoplanets at similar insolations. The star is 14.008 pc away and we estimate its mass and radius to be M=0.159±0.014MSunM = 0.159 \pm 0.014 M_{\rm Sun} and R=0.1895±0.0079RSunR = 0.1895 \pm 0.0079 R_{\rm Sun}, respectively. The star is distinctive in its very short rotational period of Prot=17.4264+/0.0094P_{\rm rot} = 17.4264 +/- 0.0094 hours and correspondingly small Rossby number of 0.007 as well as its high X-ray-to-bolometric luminosity ratio of LX/Lbol=0.0028L_X / L_{\rm bol} = 0.0028 based on a serendipitous XMM-Newton detection during a slew operation. This is consistent with the X-ray emission being observed at a maximum value of LX/Lbol103L_X / L_{\rm bol} \simeq 10^{-3} as predicted for the most rapidly rotating M dwarfs. TOI 540 b may be an alluring target to study atmospheric erosion due to the strong stellar X-ray emission. It is also among the most accessible targets for transmission and emission spectroscopy and eclipse photometry with JWST, and may permit Doppler tomography with high-resolution spectroscopy during transit. This discovery is based on precise photometric data from TESS and ground-based follow-up observations by the MEarth team.Comment: 18 pages, 7 figures. Accepted for publication in The Astronomical Journa

    KELT-9 b's Asymmetric TESS Transit Caused by Rapid Stellar Rotation and Spin-Orbit Misalignment

    Full text link
    KELT-9 b is an ultra hot Jupiter transiting a rapidly rotating, oblate early-A-type star in a polar orbit. We model the effect of rapid stellar rotation on KELT-9 b's transit light curve using photometry from the Transiting Exoplanet Survey Satellite (\tess) to constrain the planet's true spin-orbit angle and to explore how KELT-9 b may be influenced by stellar gravity darkening. We constrain the host star's equatorial radius to be 1.089±0.0171.089\pm0.017 times as large as its polar radius and its local surface brightness to vary by 38\sim38\% between its hot poles and cooler equator. We model the stellar oblateness and surface brightness gradient and find that it causes the transit light curve to lack the usual symmetry around the time of minimum light. We take advantage of the light curve asymmetry to constrain KELT-9 b's true spin orbit angle (8711+10{87^\circ}^{+10^\circ}_{-11^\circ}), agreeing with \citet{gaudi2017giant} that KELT-9 b is in a nearly polar orbit. We also apply a gravity darkening correction to the spectral energy distribution model from \citet{gaudi2017giant} and find that accounting for rapid rotation gives a better fit to available spectroscopy and yields a more reliable estimate for the star's polar effective temperature.Comment: Accepted for Publication in ApJ. arXiv admin note: text overlap with arXiv:1911.0502

    An atlas of seabed biodiversity for Aotearoa New Zealand

    Get PDF
    \ua9 2023 Copernicus GmbH. All rights reserved. The waters of Aotearoa New Zealand span over 4.2ĝ€\uafmillionĝ€\uafkm2 of the South Pacific Ocean and harbour a rich diversity of seafloor-Associated taxa. Due to the immensity and remoteness of the area, there are significant gaps in the availability of data that can be used to quantify and map the distribution of seafloor and demersal biodiversity, limiting effective management. In this study, we describe the development and accessibility of an online atlas of seabed biodiversity that aims to fill these gaps. Species distribution models were developed for 579 taxa across four taxonomic groups: demersal fish, reef fish, subtidal invertebrates and macroalgae. Spatial layers for taxa distribution based on habitat suitability were statistically validated and then, as a further check, evaluated by taxonomic experts to provide measures of confidence to guide the future use of these layers. Spatially explicit uncertainty (SD) layers were also developed for each taxon distribution. We generated layer-specific metadata, including statistical and expert evaluation scores, which were uploaded alongside the accompanying spatial layers to the open access database Zenodo. This database provides the most comprehensive source of information on the distribution of seafloor taxa for Aotearoa New Zealand and is thus a valuable resource for managers, researchers and the public that will guide the management and conservation of seafloor communities. The atlas of seabed biodiversity for Aotearoa New Zealand is freely accessible via the open-Access database Zenodo under 10.5281/zenodo.7083642 (Stephenson et al., 2022)

    Actual and undiagnosed HIV prevalence in a community sample of men who have sex with men in Auckland, New Zealand

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prevalence of HIV infection and how this varies between subgroups is a fundamental indicator of epidemic control. While there has been a rise in the number of HIV diagnoses among men who have sex with men (MSM) in New Zealand over the last decade, the actual prevalence of HIV and the proportion undiagnosed is not known. We measured these outcomes in a community sample of MSM in Auckland, New Zealand.</p> <p>Methods</p> <p>The study was embedded in an established behavioural surveillance programme. MSM attending a gay community fair day, gay bars and sex-on-site venues during 1 week in February 2011 who agreed to complete a questionnaire were invited to provide an anonymous oral fluid specimen for analysis of HIV antibodies. From the 1304 eligible respondents (acceptance rate 48.5%), 1049 provided a matched specimen (provision rate 80.4%).</p> <p>Results</p> <p>HIV prevalence was 6.5% (95% CI: 5.1-8.1). After adjusting for age, ethnicity and recruitment site, HIV positivity was significantly elevated among respondents who were aged 30-44 or 45 and over, were resident outside New Zealand, had 6-20 or more than 20 recent sexual partners, had engaged in unprotected anal intercourse with a casual partner, had had sex with a man met online, or had injected drugs in the 6 months prior to survey. One fifth (20.9%) of HIV infected men were undiagnosed; 1.3% of the total sample. Although HIV prevalence did not differ by ethnicity, HIV infected non-European respondents were more likely to be undiagnosed. Most of the small number of undiagnosed respondents had tested for HIV previously, and the majority believed themselves to be either "definitely" or "probably" uninfected. There was evidence of continuing risk practices among some of those with known HIV infection.</p> <p>Conclusions</p> <p>This is the first estimate of actual and undiagnosed HIV infection among a community sample of gay men in New Zealand. While relatively low compared to other countries with mature epidemics, HIV prevalence was elevated in subgroups of MSM based on behaviour, and diagnosis rates varied by ethnicity. Prevention should focus on raising condom use and earlier diagnosis among those most at risk, and encouraging safe behaviour after diagnosis.</p
    corecore