3,133 research outputs found
pax1-1 partially suppresses gain-of-function mutations in Arabidopsis AXR3/IAA17
Background: The plant hormone auxin exerts many of its effects on growth and development by controlling transcription of downstream genes. The Arabidopsis gene AXR3/IAA17 encodes a member of the Aux/IAA family of auxin responsive transcriptional repressors. Semi-dominant mutations in AXR3 result in an increased amplitude of auxin responses due to hyperstabilisation of the encoded protein. The aim of this study was to identify novel genes involved in auxin signal transduction by screening for second site mutations that modify the axr3-1 gain-of-function phenotype. Results: We present the isolation of the partial suppressor of axr3-1 (pax1-1) mutant, which partially suppresses almost every aspect of the axr3-1 phenotype, and that of the weaker axr3-3 allele. axr3-1 protein turnover does not appear to be altered by pax1-1. However, expression of an AXR3:: GUS reporter is reduced in a pax1-1 background, suggesting that PAX1 positively regulates AXR3 transcription. The pax1-1 mutation also affects the phenotypes conferred by stabilising mutations in other Aux/IAA proteins; however, the interactions are more complex than with axr3-1. Conclusion: We propose that PAX1 influences auxin response via its effects on AXR3 expression and that it regulates other Aux/IAAs secondarily
First records of marine invasive non-native Bryozoa in Norwegian coastal waters from Bergen to Trondheim
© 2015 The Author(s). Journal compilation © 2015 REABIC. This is an open access article, available to all readers online. The attached file is the published version of the article.© 2015 The Author(s). Journal compilation © 2015 REABIC. This is an open access article, available to all readers online, and the attached file is the published version of the article
Applied regional monitoring of the vernal advancement and retrogradation (Green wave effect) of natural vegetation in the Great Plains corridor
The author has identified the following significant results. LANDSAT 2 has shown that digital data products can be effectively employed on a regional basis to monitor changes in vegetation conditions. The TV16 was successfully applied to an extended test site and the Great Plains Corridor in tests of the ability to assess green forage biomass on rangelands as an index to vegetation condition. A strategy for using TV16 on a regional basis was developed and tested. These studies have shown that: (1) for rangelands with good vegetative cover, such as most of the Great Plains, and which are not heavily infested with brush or undesirable weed species, the LANDSAT digital data can provide a good estimate (within 250 kg/ha) of the quantity of green forage biomass, and (2) at least five levels of pasture and range feed conditions can be adequately mapped for extended regions
Use of Orbital Radars for Geoscience Investigations
Studies sponsored by NASA at the University of Kansas in cooperation with several other universities and government research agencies are substantiating the applicability of remote sensing by radar to many fields within the earth sciences, agriculture, and oceanography. 1 The purpose of this paper is to show how the properties of the radar return are used to provide geoscience information
Freezing of Spinodal Decompostion by Irreversible Chemical Growth Reaction
We present a description of the freezing of spinodal decomposition in
systems, which contain simultaneous irreversible chemical reactions, in the
hydrodynamic limit approximation. From own results we conclude, that the
chemical reaction leads to an onset of spinodal decomposition also in the case
of an initial system which is completely miscible and can lead to an extreme
retardation of the dynamics of the spinodal decomposition, with the probability
of a general freezing of this process, which can be experimetally observed in
simultaneous IPN formation.Comment: 10 page
Applications of aerospace technology in biology and medicine
Utilization of National Aeronautics and Space Administration (NASA) technology in medicine is discussed. The objective is best obtained by stimulation of the introduction of new or improved commercially available medical products incorporating aerospace technology. A bipolar donor/recipient model of medical technology transfer is presented to provide a basis for the team's methodology. That methodology is designed to: (1) identify medical problems and NASA technology that, in combination, constitute opportunities for successful medical products; (2) obtain the early participation of industry in the transfer process; and (3) obtain acceptance by the medical community of new medical products based on NASA technology. Two commercial transfers were completed: the Stowaway, a lightweight wheelchair that provides mobility for the disabled and elderly in the cabin of commercial aircraft, and Micromed, a portable medication infusion pump for the reliable, continuous infusion of medications such as heparin or insulin. The marketing and manufacturing factors critical to the commercialization of the lightweight walker incorporating composite materials were studied. Progress was made in the development and commercialization of each of the 18 currently active projects
A cohomological formula for the Atiyah-Patodi-Singer index on manifolds with boundary
International audienceWe give a cohomological formula for the index of a fully elliptic pseudodifferential operator on a manifold with boundary. As in the classic case of Atiyah-Singer, we use an embedding into an euclidean space to express the index as the integral of a cohomology class depending in this case on a noncommutative symbol, the integral being over a -manifold called the singular normal bundle associated to the embedding. The formula is based on a K-theoretical Atiyah-Patodi-Singer theorem for manifolds with boundary that is drawn from Connes' tangent groupoid approach
Individual Entanglements in a Simulated Polymer Melt
We examine entanglements using monomer contacts between pairs of chains in a
Brownian-dynamics simulation of a polymer melt. A map of contact positions with
respect to the contacting monomer numbers (i,j) shows clustering in small
regions of (i,j) which persists in time, as expected for entanglements. Using
the ``space''-time correlation function of the aforementioned contacts, we show
that a pair of entangled chains exhibits a qualitatively different behavior
than a pair of distant chains when brought together. Quantitatively, about 50%
of the contacts between entangled chains are persistent contacts not present in
independently moving chains. In addition, we account for several observed
scaling properties of the contact correlation function.Comment: latex, 12 pages, 7 figures, postscript file available at
http://arnold.uchicago.edu/~ebn
Motivation-related predictors of physical activity engagement and vitality in rheumatoid arthritis patients
This study tests the Basic Psychological Needs Theory (within the Self-determination framework), in relation to the prediction of physical activity and well-being among rheumatoid arthritis patients. Motivation regulations for physical activity were also considered in the process model. A total of 207 patients (150 females, mean age = 58 ± 11 years) completed a questionnaire pack and structural equation modelling was used to test expected relationships. Autonomy support provided by important other(s) regarding physical activity positively predicted rheumatoid arthritis patients’ need satisfaction which positively related to autonomous reasons for physical activity participation. Autonomous motivation positively predicted reported physical activity participation levels and feelings of vitality
Static Rouse Modes and Related Quantities: Corrections to Chain Ideality in Polymer Melts
Following the Flory ideality hypothesis intrachain and interchain excluded
volume interactions are supposed to compensate each other in dense polymer
systems. Multi-chain effects should thus be neglected and polymer conformations
may be understood from simple phantom chain models. Here we provide evidence
against this phantom chain, mean-field picture. We analyze numerically and
theoretically the static correlation function of the Rouse modes. Our numerical
results are obtained from computer simulations of two coarse-grained polymer
models for which the strength of the monomer repulsion can be varied, from full
excluded volume (`hard monomers') to no excluded volume (`phantom chains'). For
nonvanishing excluded volume we find the simulated correlation function of the
Rouse modes to deviate markedly from the predictions of phantom chain models.
This demonstrates that there are nonnegligible correlations along the chains in
a melt. These correlations can be taken into account by perturbation theory.
Our simulation results are in good agreement with these new theoretical
predictions.Comment: 9 pages, 7 figures, accepted for publication in EPJ
- …