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Abstract

Background: The plant hormone auxin exerts many of its effects on growth and development by
controlling transcription of downstream genes. The Arabidopsis gene AXR3/IAAI7 encodes a
member of the Aux/IAA family of auxin responsive transcriptional repressors. Semi-dominant
mutations in AXR3 result in an increased amplitude of auxin responses due to hyperstabilisation of
the encoded protein. The aim of this study was to identify novel genes involved in auxin signal
transduction by screening for second site mutations that modify the axr3-/ gain-of-function
phenotype.

Results: We present the isolation of the partial suppressor of axr3-1 (pax[-1) mutant, which partially
suppresses almost every aspect of the axr3-/ phenotype, and that of the weaker axr3-3 allele. axr3-
| protein turnover does not appear to be altered by pax/-1. However, expression of an AXR3::GUS
reporter is reduced in a pax/-l background, suggesting that PAX| positively regulates AXR3
transcription. The pax/-I mutation also affects the phenotypes conferred by stabilising mutations
in other Aux/IAA proteins; however, the interactions are more complex than with axr3-1.

Conclusion: We propose that PAX| influences auxin response via its effects on AXR3 expression
and that it regulates other Aux/IAAs secondarily.

Background

The phytohormone auxin is central to the regulation of
plant growth and development. Processes controlled by
auxin include apical dominance, adventitious root forma-
tion, tropic responses, vascular patterning and root hair
development [1-6]. These diverse morphological events
are brought about by changes in cell division, expansion
and differentiation [7-9], and many of them are mediated
by the ability of auxin to control gene expression. Several

families of genes containing Auxin Response Elements
(AuxREs) in their promoters, are rapidly transcriptionally
upregulated as a primary response to auxin [10], includ-
ing members of the Aux/IAA gene family.

The Aux/IAA genes form a large multi-gene family found
throughout the plant kingdom [11-14]. There are 29
members in Arabidopsis and their expression varies with
respect to tissue specificity, auxin induction kinetics and
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sensitivity to auxin dose [11,15]. Aux/IAA proteins are
characterised by four highly conserved domains [11]. C-
terminal domains III and IV mediate homo- and hetero-
dimerisation between Aux/IAA proteins [16]. Domains III
and IV are also found in the Auxin Response Factor (ARF)
family of transcription factors, a subset of which activate
transcription from AuxRE-containing promoters [17,18].
Conservation of domains III and IV between the Aux/IAAs
and ARFs allows combinatorial dimerisation amongst
these families. The N-terminal domain I of Aux/IAA pro-
teins functions as a transcriptional repression domain
[19]. Thus, dimers between Aux/IAAs and activator ARFs
block gene transcription [19-22].

Most Aux/IAA proteins are extremely unstable, with half-
lives ranging from 6 to 80 minutes [23-26]. They interact
via domain II with SCFTR! (Skp1, Cdc53/cullin, F-box
protein™R!) and other auxin receptor F-box-containing E3
ubiquitin-protein ligase complexes, which target them for
degradation by the ubiquitin-proteasome pathway
[25,27]. Auxin promotes their association with such E3s,
increasing their turnover [25,27-29]. Thus transcriptional
auxin responses are mediated by the auxin-induced desta-
bilisation of Aux/IAA proteins, which relieves associated
activator ARFs from repression and in turn, upregulates
transcription from AuxREs [30]. Since Aux/IAA genes con-
tain AuxREs in their promoters, this provides a feedback
mechanism for regulating their own expression. Further-
more, it allows Aux/IAAs to control each other's expres-
sion creating a complex network of cross regulation
amongst the family.

Dominant or semi-dominant mutations resulting in
hyper-stabilisation of individual Aux/IAAs have been iso-
lated in at least 8 Aux/IAA genes from Arabidopsis [31-38].
Such stabilising mutations occur in domain II and act by
reducing the affinity of the Aux/IAA for SCFIIRL, conferring
pleiotropic auxin related phenotypes. For AXR3/IAA17,
two such gain-of-function alleles have been described
[39]. axr3-1 and axr3-3 plants show increased apical dom-
inance, increased adventitious root formation, agravit-
ropic roots, no root hairs, and epinastic petioles. These
phenotypes are generally consistent with an increase in
the magnitude of auxin responses. However, similar
mutations in other Aux/IAA genes cause reduced auxin
responses in some tissues and increased responses in
other tissue types [31-38].

Although the study of the Aux/IAA and ARF families has
elucidated many of the early events in auxin signal trans-
duction, there is an ongoing requirement to find upstream
regulators and novel targets of Aux/IAA and ARF regulated
transcription. Here we present the isolation and character-
isation of an extragenic recessive mutant, pax1-1, which
partially suppresses the phenotypes of semi-dominant
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axr3 alleles. The pax1-1 single mutant shows pleiotropic
phenotypes consistent with altered auxin responses. Dou-
ble mutant analyses suggest that PAX1 also interacts
genetically with other members of the Aux/IAA family. We
propose that PAX1 acts upstream of Aux/IAA genes by reg-
ulating their transcription.

Results

Mutant isolation

To search for new mutants altered in auxin signalling and
more specifically, to find novel genetic interactors with
AXR3, we screened x-ray-mutagenised axr3-1 (Columbia)
plants for reversion of their strict apical dominance. The
mutagenised seed were also homozygous for the gl1-1
mutation (which causes plants to lack leaf trichomes) so
that revertant lines could be distinguished from contami-
nating wild-type plants. One line recovered from the
screen showed increased numbers of axillary branches
arising from the shoot, compared with axr3-1 controls
(Figure 1c and 1d). The dwarf phenotype and dark green,
curled leaves caused by the axr3-1 mutation were also par-
tially suppressed in the revertant. In addition, the carpels
were relatively longer than the sepals and petals, such that
they protruded from the closed flower buds. Revertant
plants were outcrossed to wild-type (Columbia) plants
and segregation of individuals in the F, generation mor-
phologically similar to axr3-1 homozygotes indicated that
the suppressor mutation is extragenic to axr3. Thus, the
new mutant was named partial suppressor of axr3-1 (pax1-
1). Segregation analysis also suggested that the pax1-1
mutation is recessive to wild type and that it is linked to
axr3-1 (data not shown).

Morphological phenotypes of paxl-1 seedlings

To gain insight into the wild-type role of PAX1, a detailed
analysis of the pax1-1 mutant phenotype in a wild-type
genetic background was carried out. Germination is
slower in pax1-1 mutants compared with wild-type seeds
(data not shown). pax1-1 hypocotyls are longer than wild-
type when grown under a long day photoperiod, as a
result of an increased growth rate (Figure 1e and 1f, Figure
2a). In contrast, dark grown hypocotyl elongation was not
significantly different from wild-type (Figure 2b). How-
ever, the rate of root growth is reduced in pax1-1 mutants
(Figure 2c), and paxl-1 roots are abnormally straight,
indicating that they have a reduced root wave response
(Figure 1e and 1f).

pax1-1 plants produce root hairs at a higher density than
wild-type and with altered morphology (Figure 1i and 1j).
pax1-1 hairs are approximately 34% shorter than wild-
type root hairs (wild type = 379 + 1.16 pum, pax1-1 = 252
+0.96 um), and develop in aberrant patterns. In wild-type
Arabidopsis, the root epidermis is arranged in longitudinal
files of cells [40]. Each file is composed entirely of either
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Figure |
paxl-1 mutant phenotypes in wild-type and axr3 backgrounds. (a) Wild type, (b) pax /-1, (c) axr3-1 and (d) axr3-/
pax!-1 shoot morphology at maturity. Bar = 5 cm. (e) Wild type and (f) pax/-/ seedling 6 days after germination (dag). Bar = |
cm. (g) Wild type and (h) pax|-I flower. The elongated carpel phenotype seen in pax/-1 is also observed in axr3 pax/-I double
mutants. Bar = 0.5 mm. (i) Wild type, (j) pax!-1, (k) axr3-1 and (I) axr3-1 paxI-I root hairs 3 dag. In pax /-1 and axr3-I paxI-I,
multiple roots hairs arise from a single root epidermal cell. Bar = 250 um. All axr3-3 pax[-| phenotypes were qualitatively sim-
ilar to axr3-1 pax|-1, showing suppression of axr3 phenotypes by pax!-I.

hair-forming cells (trichoblasts) or non-hair-forming cells
(atrichoblasts), and each trichoblast forms a single root
hair. However, in pax1-1 some trichoblasts produce mul-
tiple hairs, with up to 5 hairs observed per cell (Fig 1j).
These hairs arise from a single initiation site. Thus, the

increase in root hair density can be attributed at least par-
tially to the development of multiple hairs from some tri-
choblasts. Also, some hairs form branches during the
rapid tip growth phase of hair elongation, resulting in
stalked, branched structures. Therefore PAX1 appears to
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Figure 2

paxl-Iseedling growth rates. (a) Hypocotyl elongation in
light grown seedlings. n > |5. (b) Hypocotyl elongation in eti-
olated seedlings. n > 9. (c) Root elongation in light grown
plants. n > 9. Measurements were taken at various times
after sowing. Error bars represent standard errors of the
means (SE).
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affect both the orientation and the amount of root hair
elongation.

Auxin response of pax|-1 mutants

To test the auxin response of pax1-1 roots, seedlings were
transferred to medium containing various concentrations
of the natural auxin, indole-3-acetic acid (IAA) and root
elongation was measured 5 days later. On increasing con-
centrations of IAA between 10 nM and 10 uM, wild-type
root growth was inhibited in a dose-dependent manner
(Figure 3a). pax1-1 root elongation follows a similar dose
response to [AA as wild-type.

PAXI and AXR3 interact genetically

To characterise in more detail the effect of pax1-1 on the
axr3-1 phenotype, we re-crossed paxl-1 into an axr3-1
background. We also constructed double mutants
between pax1-1 and a second, weaker semi-dominant
allele, axr3-3, in order to assess the allele specificity of sup-
pression. axr3-1 and axr3-3 show severely reduced root
growth compared with wild-type (Figure 4a) [39]. How-
ever, in double mutants with pax1-1, root elongation is
increased by 32 percent and 23 percent, respectively. This
effect is particularly striking considering that the pax1-1
mutation causes a reduction in root length when in a
wild-type background. Thus, PAX1 appears to be required
for the full inhibition of root growth by axr3 gain-of-func-
tion alleles. Other aspects of the root phenotype are also
suppressed by pax1-1. In contrast to the axr3 single
mutants, where root growth apparently wanders ran-
domly with frequent changes in direction (e.g. kink in
root in Figure 1k), the axr3-1 pax1-1 and axr3-3 paxl-1
double mutant roots grow more towards the gravity vec-
tor, and produce more root hairs (Figure 1k and 11).

With respect to hypocotyl elongation, a similar interac-
tion to that observed with root growth occurs. During the
first few days of growth axr3-1 hypocotyls elongate at an
increased rate compared with wild-type, followed by a
period of slower elongation [41]. Five days after germina-
tion, axr3-1 and axr3-3 hypocotyls are slightly longer than
wild-type, similar to pax1-1 (Figure 4b). However, axr3-1
pax1-1 hypocotyls are no longer than either of the single
mutants and axr3-3 pax1-1 hypocotyls are shorter than
either single mutant.

All of the axr3 shoot phenotypes analysed were partially
suppressed by pax1-1. As in the original axr3-1 pax1-1 line
isolated from the screen, pax1-1 suppresses the increase in
apical dominance caused by axr3-1 (Figure 1c and 1d, Fig-
ure 5). axr3-1 pax1-1 double mutants produce more sec-
ondary inflorescences from rosette and cauline nodes
compared with axr3-1 homozygotes. Conversely, pax1-1
single mutants have slightly fewer second order inflores-
cences than wild-type plants. Therefore, pax1-1 has oppo-
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Double mutant analysis. (a) Root length. n > 10. (b) Hypocotyl length. n > 8. Measurements were taken 5 dag. Error bars
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site effects on shoot branching in axr3-1 and wild-type
backgrounds. Similar results were obtained for the axr3-3
pax1-1 double mutant (Figure 5). axr3-1 pax1-1 and axr3-
3 pax1-1 plants are less dwarfed than axr3-1 and axr3-3,
respectively, despite the fact that pax1-1 causes a dwarf
phenotype in plants that are wild-type for AXR3 (Figure 1a
to 1d). Also, the leaves of each double mutant are paler
green, less epinastic and less curled than the axr3 parent
(Figure 1c and 1d).

In summary, paxl-1 partially suppresses almost every
axr3-1 and axr3-3 phenotype.

Mechanism of suppression

Two possible mechanisms by which pax1-1 may suppress
the axr3-1 phenotype are: (i) by increasing the degrada-
tion rate of the over-stable axr3-1 protein, or (ii) by
decreasing the level of axr3-1 transcription. To test the first
possibility, pax1-1 was crossed with transgenic plants
expressing amino-terminal domains I and II of axr3-1
(axr3-1NT) fused to the B-glucuronidase (GUS) reporter,
under the control of the soybean heat shock promoter
(HS) [25]. This construct is an established reporter for
axr3-1 protein stability. Plants were heat shocked at 37°C
for 2 h and stained for GUS activity at various intervals fol-
lowing heat shock, to monitor the rate of GUS turnover.
In wild-type plants GUS activity remained constant
between 30 min and 2 h following heat shock, showing
that the axr3-1 protein is not observably degraded during
this time period (Figure 6a). Similar results were observed
in a pax1-1 background suggesting that pax1-1 has no
effect on axr3-1 turnover (Figure 6b). In another experi-
ment, no difference was observed between wild type and
pax1-1 on the turnover of AXR3NT-GUS, in which the
wild-type domain II destabilisation sequence is present
(data not shown) [25].

To assess whether pax1-1 controls AXR3 transcription,
pax1-1 was crossed to transgenic plants containing a tran-
scriptional fusion between the AXR3 promoter and the
GUS reporter gene (AXR3::GUS). Seedlings were stained
for GUS activity two days after germination. In a wild-type
background, GUS activity was observed in the root and
hypocotyl (Figure 6¢). However, AXR3::GUS expression
was significantly reduced in pax1-1 (Figure 6d). GUS
staining was almost completely absent from the
hypocotyl and was greatly reduced in the root.

PAXI interacts genetically with Aux/IAA genes

To determine whether PAX1 interacts with other Aux/IAA
genes, we created double mutants between pax1-1 and
axr2-1, slr-1 and shy2-2 [31,42,43]. These mutants carry
semi-dominant mutations in domain II of IAA7, IAA14
and TAA3, respectively [31,33,37]. Like axr3-1, the muta-
tions result in gain-of-function phenotypes due to hyper-
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stabilisation of the encoded proteins. Analysis of the
double mutant phenotypes showed effects that could be
classified into two different categories (Figure 4).

In the first class, the two mutations produced an additive
effect. For example, the root length of the axr2-1 pax1-1
double mutant is less than that of both the axr2-1 and
pax1-1 single mutants, which in turn are both less than
wild-type (Figure 4a). This suggests that AXR2/IAA7 and
PAX1 function independently in root elongation,
although since the axr2-1 mutation is a dominant gain-of-
function allele these results must be interpreted with cau-
tion. Likewise, slr-1 and pax1-1 had an additive effect on
both root and hypocotyl elongation, implying that the
two genes act independently during these processes (Fig-
ure 4a and 4b). The effects of shy2-2 and pax1-1 on root
elongation were also additive.

In the second class of genetic interaction, one of the muta-
tions was epistatic to the other. For example, under our
growth conditions, five days after germination axr2-1 and
axr2-1 pax1-1 hypocotyls were approximately the same
length, with axr2-1 suppressing the long hypocotyl phe-
notype of pax1-1 (Figure 4b). shy2-2 was also epistatic to
pax1-1 with respect to hypocotyl elongation.

PAXI and gibberellic acid response

Several aerial features of the pax1-1 phenotype are sugges-
tive of defects in gibberellic acid (GA) response. These
include slow germination, short stature, dark green leaves
(Figure 1a and 1b), protruding pistils (Figure 1g and 1h)
and features indicative of slower phase change [44-47].
Plants pass through several distinct phases of develop-
ment, marked by morphological changes in the lateral
organs produced by the shoot apical meristem. In Arabi-
dopsis, the first two rosette leaves are relatively round and
each subsequent leaf becomes progressively more elon-
gated [48]. pax1-1 produces rounder leaves than wild type,
suggesting that it remains for longer in more juvenile
phases of development. To test this, other markers of
phase change were compared in paxl-1 and wild-type
plants. Juvenile leaves form trichomes on their adaxial
(dorsal) surfaces but not their abaxial (ventral) surfaces,
and the transition from the juvenile to the adult phase of
vegetative development is marked by the onset of tri-
chome production on the abaxial surfaces of the leaves
[46]. Under our growth conditions, wild-type plants pro-
duced 5.80 + 0.09 juvenile leaves, lacking abaxial tri-
chomes, whereas pax1-1 plants produced 8.60 + 0.37
(Table 1). As the rate of pax1-1 leaf initiation is reduced,
this suggests that the transition to the adult growth phase
is delayed both developmentally and temporally. Further-
more, floral transition also occurs both developmentally
and temporally later than wild type, although this differ-
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ence is mostly due to the longer juvenile phase of pax1-1
(Table 1).

To test more directly for defects in GA response, pax1-1
plants were assayed for hypocotyl elongation on medium
supplemented with GA;. Wild-type hypocotyl elongation
was stimulated in a dose-dependent manner by exoge-
nous GA; (Figure 3b). However in pax1-1, GA-induced
growth is reduced compared with wild type.

Genetic mapping

From the F, of the outcross of the original pax1-1 axr3-1
double mutant to wild type (Columbia) PAX1 was esti-
mated to map approximately 20 cM proximal to AXR3 on
chromosome 1. To refine the map position of the PAX1
locus, pax1-1 (Columbia) plants were crossed to plants of
the Landsberg erecta (Ler) ecotype and the F, generation
was scored for segregation of polymorphic molecular
markers between the two ecotypes. Segregation analysis
revealed that PAX1 maps to a 420 kb region between
markers SNP82 (3 recombinants/964 chromosomes) and
cer474010 (3 recombinants/964 chromosomes). The
region appears to be somewhat recombinationally sup-
pressed, with an estimated 677 kb per cM. Attempts to
identify the gene by transformation rescue were thwarted
by the discovery that the mutant phenotype is unstable,
reverting to wild type at a low frequency that was substan-
tially enhanced by the transformation process (data not
shown).

The delimited region includes 113 genes, of which only
ARF19 is a clear PAX1 candidate, given its predicted role

http://www.biomedcentral.com/1471-2229/7/20

in the regulation of Aux/IAA gene expression. However,
DNA sequencing of the ARF19 locus, including 1.5 kb
upstream of the predicted translation start, from pax1-1,
revealed no mutations. Furthermore arf19 insertion
mutants were reported to have no phenotype [49,50], and
trans-heterozygotes between an arf19 mutant and pax1-1
are phenotypically wild-type (data not shown) suggesting
that PAX1 and ARF19 are not allelic. Thus, PAX1 is likely
to be a previously unknown component of the Aux/IAA
regulatory network.

Discussion

PAX suppresses axr3 gain-of-function alleles

In this paper we present the isolation and characterisation
of a new Arabidopsis mutant, pax1-1, which partially sup-
presses the phenotype of axr3 gain-of-function alleles. Vir-
tually every aspect of the axr3 mutant phenotype analysed
is suppressed at least partially by pax1-1. This is particu-
larly compelling in cases where pax1-1 confers a more
wild-type phenotype on axr3 mutants, despite having the
opposite effect in a wild-type background. Examples of
such are during root and hypocotyl elongation, and in the
outgrowth of axillary inflorescences. These results suggest
that PAX1 may encode a general positive regulator of
AXR3 action. PAX1 does not appear to act at the level of
AXR3 protein stability since axr3-1NT-GUS and AXR3NT-
GUS translational fusions were turned over at similar rates
in pax1-1 compared to wild type. In contrast, expression of
an AXR3::GUS reporter was down-regulated in a pax1-1
mutant background suggesting that in wild-type plants,
PAX1 regulates AXR3 transcription positively. Consistent
with this idea, suppression of the axr3 phenotypes is not
allele specific, as might be expected if the effect was at the
protein level.

This suggests a model for the suppression of axr3-1 and
axr3-3 phenotypes by pax1-1. Such phenotypes are caused
by AXR3 hyperstabilisation leading to the accumulation
of increased protein levels. Therefore, reduced AXR3 tran-
scription in pax1-1 would result in lower levels of AXR3
protein accumulation, and thus weaker axr3 phenotypes.
Although this model is attractive, we have been unable to
detect reliable differences from wild-type in the steady
state levels the endogenous AXR3 mRNA in the pax1-1
mutant background (JJ] and HMOL unpublished results).
This might be because of the differences are tissue specific
and therefore less easy to detect by RT-PCR than by histo-
chemical GUS staining. However, it is also possible that
the AXR3::GUS reporter does not accurately reflect the
expression of the endogenous gene, as is often the case
with promoter-GUS reporters. Whilst this would argue
against a model of axr3-1 suppression by specific tran-
scriptional down-regulation of AXR3, our results none the
less suggest that the pax1-1 phenotype may be mediated
by changes in transcription of auxin-regulated genes, since
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Figure 6
Control of AXR3 expression by PAX|. HS::axr3-INT-GUS expression in (a) wild type and (b) pax/-1, 2 h following heat
induction. AXR3::GUS expression in (c) wild type and (d) pax/-I seedlings stained for GUS activity 2 dag. Bar = 2 mm.

the reporter construct is rapidly auxin responsive (MT and
HMOL unpublished results).

PAXI and other Aux/IAAs

Double mutant analysis demonstrates that PAX1 interacts
genetically with other members of the Aux/IAA family in
addition to AXR3. However, unlike its interaction with
AXR3, where virtually all phenotypes are suppressed, a
more complex set of interactions is observed with the
other Aux/IAAs tested. pax1-1 shows combinations of epi-
static and additive phenotypes with axr2-1, sir-1 or shy2-2.
Furthermore, the type of interaction pax1-1 has with dif-
ferent Aux/IAA mutants, varies in different organs.

One explanation for the more complex set of interactions
observed is that the effects of PAX1 on other members of
the Aux/IAA family are indirect. Since Aux/IAA genes regu-
late each others' transcription, alterations in the expres-
sion level of one Aux/IAA gene (i.e. AXR3) could have
downstream and feedback effects on the transcription of

Table I: Timing of paxI-I phase change

other family members. Therefore, the primary targets of
PAX1 may include AXR3 transcription, whereas the effect
on other Aux/IAAs may be secondary. Thus in a pax1-1
background, the phenotypes may result from widespread
alterations in the balance of the Aux/IAA-ARF network,
triggered by primary changes in just a few genes.

paxl-1 is defective in auxin-regulated development

A prediction of our model is that pax1-1 should have
auxin-related phenotypes in a wild-type background.
Indeed, many aspects of the pax1-1 phenotype are remi-
niscent of defects in auxin transport or signal transduc-
tion. For example, root, hypocotyl and stem elongation
are regulated by auxin, and mutations in components of
auxin signalling, such as Aux/IAA and ARF family mem-
bers, lead to perturbations in these processes [39,51,52].
A mutant in ARF2 flowers late, suggesting that auxin may
also control floral transition [53]. Another auxin-medi-
ated process is root waving, with transport and signalling
mutants displaying abnormal patterns of waving [37,54].

Number of juvenile leaves

Timing of floral transition (dag)

Number of leaves at floral

transition
Wild type (Columbia) n = 20 5.8 +0.09 16.50 £ 0.29 10.05 £ 0.20
paxl-I n=10 8.60 + 0.37 19.20 £ 0.44 12.50 £ 0.52

For each sample, the mean and SE are shown.
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Furthermore, exogenous auxin affects root hair elongation
and morphology, whilst many auxin response mutants
show altered root hair growth [3,55,56].

Although the data discussed above suggest that PAX1 is
involved in auxin response, pax1-1 roots show a wild-type
growth response to exogenous IAA. This is consistent with
the idea that the Aux/IAA-ARF network is differently con-
figured but not globally down-regulated in the mutant, so
that some phenotypes are suggestive of auxin resistance,
but others are not. Analysis of the loss of function pheno-
types of individual Aux/IAAs and ARFs demonstrates that
the network is very robust with significant functional
redundancy. If the PAX1 gene acts to modulate the net-
work, it is therefore likely to affect more than one network
member.

PAXI and GA response

Another aspect of the paxl-1 phenotype is apparent
defects in GA response. GA promotes germination and
phase change, and increases stem and floral organ elonga-
tion [44-47]. pax1-1 plants show decreased germination,
delayed phase change, reduced stem length, and altered
floral organ elongation. Consistent with PAX1 function-
ing in GA responses, mutant hypocotyls treated with GA
are resistant to its growth-promoting effects.

These data implicate PAX1 in both auxin and GA
responses. Auxin is required for GA signalling, by regulat-
ing the GA-induced degradation of DELLA growth repres-
sor proteins [57]. Furthermore, GA mediated
destabilisation of the DELLA protein RGA is reduced in
the auxin resistant mutant, axr1-12. AXR1 encodes a regu-
lator of an E3 ubiquitin-protein ligase responsible for
Aux/IAA turnover, and thus AXR1 may control DELLA
protein levels through the destabilisation of Aux/IAAs
[25,58]. In such a case, effects of PAX1 on Aux/IAA expres-
sion levels could be sufficient to alter DELLA protein turn-
over. In addition, GA metabolism may be affected since
AXR3 and other Aux/IAAs are thought to regulate tran-
scription of GA metabolism genes directly[59]. Alterna-
tively, PAX1 might control GA signalling and/or
metabolism independently of its effects on Aux/IAA pro-
tein levels.

Conclusion

Genetic analysis of the pax-1-1 mutant demonstrates that
PAX1 positively regulates AXR3/IAA17 transcription.
PAX1 also interacts genetically with other Aux/IAAs,
although these effects may occur secondarily through its
ability to regulate AXR3. In addition, GA responses are
clearly affected by PAX1. Thus the PAX1 locus is important
for both auxin and GA signalling. Understanding the
mechanisms that underlie cross talk between different
plant hormones is currently of great interest to plant biol-

http://www.biomedcentral.com/1471-2229/7/20

ogists. Thus the cloning and molecular analysis of PAX1
should have valuable implications for the hormone sig-
nalling community.

Methods

Plant materials and growth conditions

The following mutants are in the Columbia (Col) ecotype:
axr3-1, axr3-3, axr2-1, and slr-1 [31,39,43]. shy2-2 is in the
Ler ecotype [42]. Wild-type Ler was used for mapping
experiments.

Seeds were sterilised and sown onto Petri dishes contain-
ing agar-solidified Arabidopsis thaliana salts (ATS) growth
medium [43]. For examination of root hair phenotypes,
the agar was replaced with 3.6% Phytagel (Sigma, UK).
Plants were grown at 17-25°C in white light (60-90
pmol m2s1), under a 16 h light/8 h dark photoperiod.
Seedlings were transplanted to Levington F2 compost
(Fisons, UK) 8-10 days after germination, and grown to
maturity under the conditions described above.

Mutant isolation

An M, population of 50 000 axr3-1 gl1-1 plants was gen-
erated by x-ray mutagenesis of the seed (8 kR dose). The
M, was harvested as 30 seed pools, and 1500 plants from
each pool were screened for suppression of the axr3-1
shoot phenotype. The pax1-1 single mutant was obtained
from the F, of an outcross between axr3-1 pax1-1 plants
and wild-type (Col). pax1-1 homozygotes were back-
crossed twice to wild type and for each backcross, the F,
generation was analysed for segregation of the mutant
phenotypes. 55 and 94 F, plants were analysed from the
first and second backcrosses, respectively, and all of the
phenotypes cosegregated. pax1-1 homozygotes from the
second backcross were used in all experiments except for
the genetic crosses and in Figure 3a, where the original
pax1-1 single mutant line was used.

Genetic mapping

pax1-1 was crossed with Ler plants and F, individuals
showing the pax1-1 mutant phenotype were selected to
form the mapping population. Genomic DNA was iso-
lated from individual plants and amplified with primers
for SSLP, CAPS and SNP markers listed at The Arabidopsis
Information Resource (TAIR) [60]. Primer sequences and
restriction sites for markers nga392, M59 and CAT3 were
obtained from TAIR. Primer sequences for the remaining
markers were as follows: cer465593: 5' caacaatggtgatattt-
gttttge 3' and 5' caacttttaggctctctagegttt 3'; cerd53516: 5'
tatcagcaaattgcaaggattaga 3' and 5' tcaccactttgtattgtttttcct 3';
cerd65605: 5' tgggagttccaatgtttaaag 3' and 5' attgatggaat-
ggaacagaga 3'; cer452156 5' acacgaccaagaagtcaaata 3' and
5' acaattcttgtcgggcagat 3'; cer474010 5' cgaccctcgagaaa-
gaacaa 3' and 5' gttatactgcgectggaacc 3'; cer453463: 5'
aataaaggcccatcttgtgtgt 3' and 5' actggagcgtcgtcattagttt 3';
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cer453259: 5' ggtccaaacaaaaacaaattcc 3' and 5' cgaacaat-
caagccacctct 3'; SNP82: 5' tggaaagccattgatggaagg 3' (Col)
or 5' tggaaagccattgatggaagc 3' (Ler), and 5' ttccgaagacca-
gaataacca 3'; SM106: 5' tatataagagaagagaaaga 3' and 5' gct-
gagtgagacccagtcct 3', Sacl (New England Biolabs) was used
to cleave the PCR product.

Double mutant isolation

To verify the genotypes of double mutants, each line was
backcrossed to both pax1-1 and wild type. In test crosses
to wild type, the phenotype of all F, plants was qualita-
tively identical to the dominant mutant. F; plants from
backcrosses to pax1-1 were all morphologically similar to
the respective double mutant.

When double mutants between pax1-1 (Col) and shy2-2
(Ler) were constructed, double mutants lacking the erecta
(er) mutation were selected for phenotypic analysis. As a
control, shy2-2 homozygotes lacking the er mutation were
also selected from the F, of the cross. To verify that these
plants were homozygous for the wild-type ER allele, they
were backcrossed to shy2-2 (Ler) and the F, generation was
scored for the absence of the er phenotype.

Phenotypic analysis

In all experiments except those shown in Figure 2, only
seedlings germinating within 3 days after sowing were
analysed. Root and hypocotyl growth was measured using
Lucia G (version 3.52a, 1991, Laboratory Imaging, Nikon
UK Limited, Kingston, UK) image analysis software with a
video camera input. Timing of floral transition was scored
as the number of days after germination (dag) when floral
buds first became visible, and the number of leaves at flo-
ral transition was scored at least 7 days later. Leaf senes-
cence was recorded every 2 to 3 days so that the number
of leaves counted reflected the total number of leaves pro-
duced. To characterise shoot branching phenotypes plants
were analysed every 2 to 3 days for the time at which the
first flower opened, and the numbers of secondary inflo-
rescences were counted 14 days after this. Only axillary
buds that were at least 3 mm long were counted as inflo-
rescences.

Hormone response assays

For the auxin growth response assay, seedlings were ger-
minated on ATS plates and then transferred after 3 days,
to new plates supplemented with IAA. The position of
each root tip was marked and after a further 5 days, the
amount of new root growth was measured.

To test the hypocotyl growth response to GA, seedlings
were germinated on ATS plates and then transferred after
4 days to new plates supplemented with GA;. The posi-
tion of each hypocotyl apex was marked and the amount

http://www.biomedcentral.com/1471-2229/7/20

of new hypocotyl growth was measured after a further 4
days.

Transgenic plants

Arabidopsis lines containing the HS::axr3-1NT-GUS and
HS::AXR3NT-GUS constructs have been described previ-
ously [25].

A genomic fragment containing 2.0 kb 5' to the AXR3
translation start was cloned into pBI101.3 (Clontech, UK)
upstream of the GUS reporter gene, at BamHI and blunted
EcoRI/Hindlll sites, to create the plasmid pAXR3:GUS.
This 2.0 kb promoter region was assumed to be sufficient
to confer wild-type AXR3 expression since transgenic Ara-
bidopsis plants containing the axr3-1 cDNA fused directly
downstream of this promoter displayed phenotypes qual-
itatively similar to axr3-1 mutants. pAXR3::GUS was trans-
formed into wild type (Col) by vacuum infiltration [61].
Multiple independent transgenic lines showed the same
qualitative pattern of GUS expression. One of these lines
was crossed into pax1-1.

Histochemical localisation of GUS

GUS activity was detected by incubating plants in 50 mM
potassium phosphate pH 7 containing 0.1% (v/v) triton
X-100, 1 mM potassium ferricyanide, 1 mM potassium
ferrocyanide, 10 mM EDTA and 575 uM X-Gluc at 37°C
for 16 h.
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