46 research outputs found

    A simple model for the outcomes of collisions between exhaled aerosol droplets and airborne particulate matter: Towards an understanding of the influence of air pollution on airborne viral transmission

    Full text link
    A model that predicts the outcome of collisions between droplets and particles in terms of the distribution of the droplet volume post-collision is lacking, in contrast to the case for droplet-droplet interactions. Taking existing models that successfully predict the outcomes (coalescence, stretching or reflexive separation) and post-separation characteristics (sizes, numbers and velocities of the resulting droplets) of droplet-droplet collisions and adapting them to take into account an inextensible, non-deformable particle with varying wettability characteristics, a new model is presented for droplet-particle collisions. The predictions of the new model agree well with experimental observations of droplet-particle collisions in low-viscosity regimes. The model is then applied to the case of collisions between respiratory aerosols generated by breath, speech, cough and sneeze and ambient airborne particulate material (PM) in order to assess the potential contribution of these interactions to the enhanced transmission of pathogens contained in the aerosol, including COVID-19. The results show that under realistic conditions it is possible for aerosol-PM collisions to enrich the pathogen content of smaller (and so more persistent) aerosol fractions, and to transfer pathogens to the surface of PM particles that can travel deep into the respiratory tract. In the context of better knowledge of the size and velocity distributions of respiratory aerosols, this model may be used to predict the extent to which high ambient PM levels may contribute to airborne infection by pathogens such as COVID-19.Comment: 32 pages, 10 figures, 4 tables, supporting informatio

    Lamellar Structures of MUC2-Rich Mucin: A Potential Role in Governing the Barrier and Lubricating Functions of Intestinal Mucus

    Get PDF
    Mucus is a ubiquitous feature of mammalian wet epithelial surfaces, where it lubricates and forms a selective barrier that excludes a range of particulates, including pathogens, while hosting a diverse commensal microflora. The major polymeric component of mucus is mucin, a large glycoprotein formed by several MUC gene products, with MUC2 expression dominating intestinal mucus. A satisfactory answer to the question of how these molecules build a dynamic structure capable of playing such a complex role has yet to be found, as recent reports of distinct layers of chemically identical mucin in the colon and anomalously rapid transport of nanoparticles through mucus have emphasized. Here we use atomic force microscopy (AFM) to image a MUC2-rich mucus fraction isolated from pig jejunum. In the freshly isolated mucin fraction, we find direct evidence for trigonally linked structures, and their assembly into lamellar networks with a distribution of pore sizes from 20 to 200 nm. The networks are two-dimensional, with little interaction between lamellae. The existence of persistent cross-links between individual mucin polypeptides is consistent with a non-self-interacting lamellar model for intestinal mucus structure, rather than a physically entangled polymer network. We only observe collapsed entangled structures in purified mucin that has been stored in nonphysiological conditions

    Sliding Contact Dynamic Force Spectroscopy Method for Interrogating Slowly Forming Polymer Cross-Links

    Get PDF
    Dynamic Single Molecule Force Spectroscopy (SMFS), conducted most commonly using AFM, has become a widespread and valuable tool for understanding the kinetics and thermodynamics of fundamental molecular processes such as ligand-receptor interactions and protein unfolding. Where slowly forming bonds are responsible for the primary characteristics of a material, as is the case in crosslinks in some polymer gels, care must be taken to ensure that a fully equilibrated bond has first formed before its rupture can be interpreted. Here we introduce a method, sliding contact force spectroscopy (SCFS), which effectively eliminates the kinetics of bond formation from the measurement of bond rupture. In addition it permits bond rupture measurements in systems where one of the binding partners may be introduced into solution prior to binding without tethering to a surface. Taking as an exemplar of a slowly forming bond the ‘eggbox’ junction crosslinks between oligoguluronic acid chains (oligoGs) in the commercially important polysaccharide alginate, we show that SCFS measures accurately the equilibrated bond strength of the crosslink when one chain is introduced into the sample solution without tethering to a surface. The results validate the SCFS technique for performing single molecule force spectroscopy experiments, and show that it has advantages in cases where the bond to be studied forms slowly and where tethering of one of the binding partners is impractical

    Supramolecular Amino Acid Based Hydrogels: Probing the Contribution of Additive Molecules using NMR Spectroscopy

    Get PDF
    Supramolecular hydrogels are composed of self-assembled solid networks that restrict the flow of water. l-Phenylalanine is the smallest molecule reported to date to form gel networks in water, and it is of particular interest due to its crystalline gel state. Single and multi-component hydrogels of l-phenylalanine are used herein as model materials to develop an NMR-based analytical approach to gain insight into the mechanisms of supramolecular gelation. Structure and composition of the gel fibres were probed using PXRD, solid-state NMR experiments and microscopic techniques. Solution-state NMR studies probed the properties of free gelator molecules in an equilibrium with bound molecules. The dynamics of exchange at the gel/solution interfaces was investigated further using high-resolution magic angle spinning (HR-MAS) and saturation transfer difference (STD) NMR experiments. This approach allowed the identification of which additive molecules contributed in modifying the material properties

    High Molecular Weight Mixed-Linkage Glucan as a Mechanical and Hydration Modulator of Bacterial Cellulose:Characterization by Advanced NMR Spectroscopy

    Get PDF
    Bacterial cellulose (BC) consists of a complex three-dimensional organization of ultrafine fibers which provide unique material properties such as softness, biocompatibility, and water-retention ability, of key importance for biomedical applications. However, there is a poor understanding of the molecular features modulating the macroscopic properties of BC gels. We have examined chemically pure BC hydrogels and composites with arabinoxylan (BC-AX), xyloglucan (BC-XG), and high molecular weight mixed-linkage glucan (BC-MLG). Atomic force microscopy showed that MLG greatly reduced the mechanical stiffness of BC gels, while XG and AX did not exert a significant effect. A combination of advanced solid-state NMR methods allowed us to characterize the structure of BC ribbons at ultra-high resolution and to monitor local mobility and water interactions. This has enabled us to unravel the effect of AX, XG, and MLG on the short-range order, mobility, and hydration of BC fibers. Results show that BC-XG hydrogels present BC fibrils of increased surface area, which allows BC-XG gels to hold higher amounts of bound water. We report for the first time that the presence of high molecular weight MLG reduces the density of clusters of BC fibrils and dramatically increases water interactions with BC. Our data supports two key molecular features determining the reduced stiffness of BC-MLG hydrogels, that is, (i) the adsorption of MLG on the surface of BC fibrils precluding the formation of a dense network and (ii) the preorganization of bound water by MLG. Hence, we have produced and fully characterized BC-MLG hydrogels with novel properties which could be potentially employed as renewable materials for applications requiring high water retention capacity (e.g. personal hygiene products)

    Polymer sequencing by molecular machines: A framework for predicting the resolving power of a sliding contact force spectroscopy sequencing method

    Get PDF
    We evaluate an AFM-based single molecule force spectroscopy method for mapping sequences in otherwise difficult to sequence heteropolymers, including glycosylated proteins and glycans. The sliding contact force spectroscopy (SCFS) method exploits a sliding contact made between a nanopore threaded over a polymer axle and an AFM probe. We find that for sliding α- and β- cyclodextrin nanopores over a wide range of hydrophilic monomers, the free energy of sliding is proportional to the sum of two dimensionless, easily calculable parameters representing the relative partitioning of the monomer inside the nanopore or in the aqueous phase, and the friction arising from sliding the nanopore over the monomer. Using this relationship we calculate sliding energies for nucleic acids, amino acids, glycan and synthetic monomers and predict on the basis of these calculations that SCFS will detect N- and O-glycosylation of proteins and patterns of sidechains in glycans. For these applications, SCFS offers an alternative to sequence mapping by mass spectrometry or newly-emerging nanopore technologies that may be easily implemented using a standard AFM

    Segmented flow generator for serial crystallography at the European X-ray free electron laser

    Get PDF
    Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) allows structure determination of membrane proteins and time-resolved crystallography. Common liquid sample delivery continuously jets the protein crystal suspension into the path of the XFEL, wasting a vast amount of sample due to the pulsed nature of all current XFEL sources. The European XFEL (EuXFEL) delivers femtosecond (fs) X-ray pulses in trains spaced 100 ms apart whereas pulses within trains are currently separated by 889 ns. Therefore, continuous sample delivery via fast jets wastes >99% of sample. Here, we introduce a microfluidic device delivering crystal laden droplets segmented with an immiscible oil reducing sample waste and demonstrate droplet injection at the EuXFEL compatible with high pressure liquid delivery of an SFX experiment. While achieving ~60% reduction in sample waste, we determine the structure of the enzyme 3-deoxy-D-manno-octulosonate-8-phosphate synthase from microcrystals delivered in droplets revealing distinct structural features not previously reported

    Single molecule investigation of the onset and minimum size of the calcium-mediated junction zone in alginate

    Get PDF
    One of the principal roles of alginate, both natively and in commercial applications, is gelation via Ca2+-mediated crosslinks between blocks of guluronic acid. In this work, single molecule measurements were carried out between well-characterised series of nearly monodisperse guluronic acid blocks (‘oligoGs’) using dynamic force spectroscopy. The measurements provide evidence that for interaction times on the order of tens of milliseconds the maximum crosslink strength is achieved by pairs of oligoGs long enough to allow the coordination of 4 Ca2+ ions, with both shorter and longer oligomers forming weaker links. Extending the interaction time from tens to hundreds of milliseconds allows longer oligoGs to achieve much stronger crosslinks but does not change the strength of individual links between shorter oligoGs. These results are considered in light of extant models for the onset of cooperative crosslinking in polyelectrolytes and an anisotropic distribution of oligoGs on interacting surfaces and provide a timescale for the formation and relaxation of alginate gels at the single crosslink level

    Case Reports1. A Late Presentation of Loeys-Dietz Syndrome: Beware of TGFβ Receptor Mutations in Benign Joint Hypermobility

    Get PDF
    Background: Thoracic aortic aneurysms (TAA) and dissections are not uncommon causes of sudden death in young adults. Loeys-Dietz syndrome (LDS) is a rare, recently described, autosomal dominant, connective tissue disease characterized by aggressive arterial aneurysms, resulting from mutations in the transforming growth factor beta (TGFβ) receptor genes TGFBR1 and TGFBR2. Mean age at death is 26.1 years, most often due to aortic dissection. We report an unusually late presentation of LDS, diagnosed following elective surgery in a female with a long history of joint hypermobility. Methods: A 51-year-old Caucasian lady complained of chest pain and headache following a dural leak from spinal anaesthesia for an elective ankle arthroscopy. CT scan and echocardiography demonstrated a dilated aortic root and significant aortic regurgitation. MRA demonstrated aortic tortuosity, an infrarenal aortic aneurysm and aneurysms in the left renal and right internal mammary arteries. She underwent aortic root repair and aortic valve replacement. She had a background of long-standing joint pains secondary to hypermobility, easy bruising, unusual fracture susceptibility and mild bronchiectasis. She had one healthy child age 32, after which she suffered a uterine prolapse. Examination revealed mild Marfanoid features. Uvula, skin and ophthalmological examination was normal. Results: Fibrillin-1 testing for Marfan syndrome (MFS) was negative. Detection of a c.1270G > C (p.Gly424Arg) TGFBR2 mutation confirmed the diagnosis of LDS. Losartan was started for vascular protection. Conclusions: LDS is a severe inherited vasculopathy that usually presents in childhood. It is characterized by aortic root dilatation and ascending aneurysms. There is a higher risk of aortic dissection compared with MFS. Clinical features overlap with MFS and Ehlers Danlos syndrome Type IV, but differentiating dysmorphogenic features include ocular hypertelorism, bifid uvula and cleft palate. Echocardiography and MRA or CT scanning from head to pelvis is recommended to establish the extent of vascular involvement. Management involves early surgical intervention, including early valve-sparing aortic root replacement, genetic counselling and close monitoring in pregnancy. Despite being caused by loss of function mutations in either TGFβ receptor, paradoxical activation of TGFβ signalling is seen, suggesting that TGFβ antagonism may confer disease modifying effects similar to those observed in MFS. TGFβ antagonism can be achieved with angiotensin antagonists, such as Losartan, which is able to delay aortic aneurysm development in preclinical models and in patients with MFS. Our case emphasizes the importance of timely recognition of vasculopathy syndromes in patients with hypermobility and the need for early surgical intervention. It also highlights their heterogeneity and the potential for late presentation. Disclosures: The authors have declared no conflicts of interes
    corecore