94 research outputs found

    Evidence of Embodied Social Competence During Conversation in High Functioning Children with Autism Spectrum Disorder

    Get PDF
    Even high functioning children with Autism Spectrum Disorder (ASD) exhibit impairments that affect their ability to carry out and maintain effective social interactions in multiple contexts. One aspect of subtle nonverbal communication that might play a role in this impairment is the whole-body motor coordination that naturally arises between people during conversation. The current study aimed to measure the time-dependent, coordinated whole-body movements between children with ASD and a clinician during a conversational exchange using tools of nonlinear dynamics. Given the influence that subtle interpersonal coordination has on social interaction feelings, we expected there to be important associations between the dynamic motor movement measures introduced in the current study and the measures used traditionally to categorize ASD impairment (ADOS-2, joint attention and theory of mind). The study found that children with ASD coordinated their bodily movements with a clinician, that these movements were complex and that the complexity of the children’s movements matched that of the clinician’s movements. Importantly, the degree of this bodily coordination was related to higher social cognitive ability. This suggests children with ASD are embodying some degree of social competence during conversations. This study demonstrates the importance of further investigating the subtle but important bodily movement coordination that occurs during social interaction in children with ASD

    Dry conditions disrupt terrestrial-aquatic linkages in northern catchments.

    Get PDF
    Aquatic ecosystems depend on terrestrial organic matter (tOM) to regulate many functions, such as food web production and water quality, but an increasing frequency and intensity of drought across northern ecosystems is threatening to disrupt this important connection. Dry conditions reduce tOM export and can also oxidize wetland soils and release stored contaminants into stream flow after rainfall. Here, we test whether these disruptions to terrestrial-aquatic linkages occur during mild summer drought and whether this affects biota across 43 littoral zone sites in 11 lakes. We use copper (Cu) and nickel (Ni) as representative contaminants, and measure abundances of Hyalella azteca, a widespread indicator of ecosystem condition and food web production. We found that tOM concentrations were reduced but correlations with organic soils (wetlands and riparian forests) persisted during mild drought and were sufficient to suppress labile Cu concentrations. Wetlands, however, also became a source of labile Ni to littoral zones, which was linked to reduced abundances of the amphipod H. azteca, on average by up to 70 times across the range of observed Ni concentrations. This reveals a duality in the functional linkage of organic soils to aquatic ecosystems whereby they can help buffer the effects of hydrologic disconnection between catchments and lakes but at the cost of biogeochemical changes that release stored contaminants. As evidence of the toxicity of trace contaminant concentrations and their global dispersion grows, sustaining links among forests, organic soils and aquatic ecosystems in a changing climate will become increasingly important.Natural Environment Research Council (Grant ID: NE/L006561/1)This is the final version of the article. It first appeared from Wiley via https://doi.org/10.1111/gcb.1336

    The application of Diffusive Gradients in Thin Films (DGT) for improved understanding of metal behaviour at marine disposal sites

    Get PDF
    Assessment of the effects of sediment metal contamination on biological assemblages and function remains a key question in marine management, especially in relation to disposal activities. However, the appropriate description of bioavailable metal concentrations within pore-waters has rarely been reported. Here, metal behaviour and availability at contaminated dredged material disposal sites within UK waters were investigated using Diffusive Gradient in Thin films (DGT). Three stations, representing contrasting history and presence of dredge disposal were studied. Depth profiles of five metals were derived using DGT probes as well as discrete analysis of total metal concentrations from sliced cores. The metals analysed were: iron and manganese, both relevant to sediment biogeochemistry; cadmium, nickel and lead, classified as priority pollutants. DGT time-integrated labile flux profiles of the metals display behaviour consistent with increasingly reduced conditions at depth and availability to DGT (iron and manganese), subsurface peaks and a potential sedimentary source to the water column related to the disposal activity (lead and nickel) and release to pore-water linked to decomposition of enriched phytodetritus (cadmium). DGT data has the potential to improve our current understanding of metal behaviour at impacted sites and is suitable as a monitoring tool. DGT data can provide information on metal availability and fluxes within the sediment at high depth-resolution (5 mm steps). Differences observed in the resulting profiles between DGT and conventional total metal analysis illustrates the significance of considering both total metals and a potentially labile fraction. The study outcomes can help to inform and improve future disposal site impact assessment, and could be complemented with techniques such as Sediment Profile Imagery for improved biologically relevance, spatial coverage and cost-effective monitoring and sampling of dredge material disposal sites. Additionally, the application of this technology could help improve correlative work on biological impacts under national and international auspices when linking biological effects to more biologically relevant metal concentrations

    Mutations in the Catalytic Loop HRD Motif Alter the Activity and Function of Drosophila Src64

    Get PDF
    The catalytic loop HRD motif is found in most protein kinases and these amino acids are predicted to perform functions in catalysis, transition to, and stabilization of the active conformation of the kinase domain. We have identified mutations in a Drosophila src gene, src64, that alter the three HRD amino acids. We have analyzed the mutants for both biochemical activity and biological function during development. Mutation of the aspartate to asparagine eliminates biological function in cytoskeletal processes and severely reduces fertility, supporting the amino acid's critical role in enzymatic activity. The arginine to cysteine mutation has little to no effect on kinase activity or cytoskeletal reorganization, suggesting that the HRD arginine may not be critical for coordinating phosphotyrosine in the active conformation. The histidine to leucine mutant retains some kinase activity and biological function, suggesting that this amino acid may have a biochemical function in the active kinase that is independent of its side chain hydrogen bonding interactions in the active site. We also describe the phenotypic effects of other mutations in the SH2 and tyrosine kinase domains of src64, and we compare them to the phenotypic effects of the src64 null allele

    Conserved Genes Act as Modifiers of Invertebrate SMN Loss of Function Defects

    Get PDF
    Spinal Muscular Atrophy (SMA) is caused by diminished function of the Survival of Motor Neuron (SMN) protein, but the molecular pathways critical for SMA pathology remain elusive. We have used genetic approaches in invertebrate models to identify conserved SMN loss of function modifier genes. Drosophila melanogaster and Caenorhabditis elegans each have a single gene encoding a protein orthologous to human SMN; diminished function of these invertebrate genes causes lethality and neuromuscular defects. To find genes that modulate SMN function defects across species, two approaches were used. First, a genome-wide RNAi screen for C. elegans SMN modifier genes was undertaken, yielding four genes. Second, we tested the conservation of modifier gene function across species; genes identified in one invertebrate model were tested for function in the other invertebrate model. Drosophila orthologs of two genes, which were identified originally in C. elegans, modified Drosophila SMN loss of function defects. C. elegans orthologs of twelve genes, which were originally identified in a previous Drosophila screen, modified C. elegans SMN loss of function defects. Bioinformatic analysis of the conserved, cross-species, modifier genes suggests that conserved cellular pathways, specifically endocytosis and mRNA regulation, act as critical genetic modifiers of SMN loss of function defects across species

    Probing strongly coupled chameleons with slow neutrons

    No full text

    Evidence of embodied social competence during conversation in high functioning children with autism spectrum disorder.

    Get PDF
    Even high functioning children with Autism Spectrum Disorder (ASD) exhibit impairments that affect their ability to carry out and maintain effective social interactions in multiple contexts. One aspect of subtle nonverbal communication that might play a role in this impairment is the whole-body motor coordination that naturally arises between people during conversation. The current study aimed to measure the time-dependent, coordinated whole-body movements between children with ASD and a clinician during a conversational exchange using tools of nonlinear dynamics. Given the influence that subtle interpersonal coordination has on social interaction feelings, we expected there to be important associations between the dynamic motor movement measures introduced in the current study and the measures used traditionally to categorize ASD impairment (ADOS-2, joint attention and theory of mind). The study found that children with ASD coordinated their bodily movements with a clinician, that these movements were complex and that the complexity of the children's movements matched that of the clinician's movements. Importantly, the degree of this bodily coordination was related to higher social cognitive ability. This suggests children with ASD are embodying some degree of social competence during conversations. This study demonstrates the importance of further investigating the subtle but important bodily movement coordination that occurs during social interaction in children with ASD
    • …
    corecore