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Abstract

Aquatic ecosystems depend on terrestrial organic matter (tOM) to regulate many functions, such as food web produc-

tion and water quality, but an increasing frequency and intensity of drought across northern ecosystems is threaten-

ing to disrupt this important connection. Dry conditions reduce tOM export and can also oxidize wetland soils and

release stored contaminants into stream flow after rainfall. Here, we test whether these disruptions to terrestrial–
aquatic linkages occur during mild summer drought and whether this affects biota across 43 littoral zone sites in 11

lakes. We use copper (Cu) and nickel (Ni) as representative contaminants, and measure abundances of Hyalella azteca,

a widespread indicator of ecosystem condition and food web production. We found that tOM concentrations were

reduced but correlations with organic soils (wetlands and riparian forests) persisted during mild drought and were

sufficient to suppress labile Cu concentrations. Wetlands, however, also became a source of labile Ni to littoral zones,

which was linked to reduced abundances of the amphipod H. azteca, on average by up to 70 times across the range of

observed Ni concentrations. This reveals a duality in the functional linkage of organic soils to aquatic ecosystems

whereby they can help buffer the effects of hydrologic disconnection between catchments and lakes but at the cost of

biogeochemical changes that release stored contaminants. As evidence of the toxicity of trace contaminant concentra-

tions and their global dispersion grows, sustaining links among forests, organic soils and aquatic ecosystems in a

changing climate will become increasingly important.
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Introduction

The biogeochemistry of organic soils plays an impor-

tant role in linking the functioning of aquatic ecosys-

tems to their catchments. The main link between

organic soils and aquatic ecosystems is the provision of

terrestrial organic matter (tOM). tOM can block UV

radiation and strengthen lake thermal stratification

(Morris et al., 1995; Williamson et al., 1996; Tanentzap

et al., 2007), subsidize food resources for organisms at

the base of aquatic food webs (Polis et al., 1997; Schind-

ler, 2009; Tanentzap et al., 2014) and reduce the

bioavailability of contaminants in surface waters

(Playle, 1998). A second important link by which

organic soils regulate aquatic ecosystems is through the

filtration of run-off water, which keeps contaminants

out of receiving surface waters. Organic soils are partic-

ularly good at retaining metal contaminants and pre-

venting their release into surface waters, and so

wetlands are often intentionally used to improve

downstream water quality in contaminated catchments

(Crist et al., 1996; Brown et al., 2000).

Global change is now threatening to disrupt linkages

between catchments and aquatic ecosystems, especially

in northern ecosystems that hold much of the planet’s

available freshwater (Schindler & Lee, 2010). Summer

droughts are increasing in intensity, duration and fre-

quency (Trenberth, 2011), causing low-flow conditions

that effectively disconnect upland soils from their

receiving waters and ultimately reduce concentrations

and fluxes of tOM from forests and wetlands (Schiff

et al., 1998; Clark et al., 2005; Sowerby et al., 2010).

Organic soils that are oxidized when dry generate acids

that further suppress tOM by reducing organic carbon

solubility, and release metals into pore water and

stream flow during rain events (Evans et al., 2006; Pen-

nington & Watmough, 2015; Watmough & Orlovskaya,

2015). The release of metal contaminants is exacerbated

by low-flow conditions that provide little dilution.

Metals and other contaminants reach toxic levels dur-

ing pulse exposure (Szkokan-Emilson et al., 2013), and

even low naturally occurring concentrations can reduce
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aquatic food web complexity, resulting in fewer species

and shorter food chains (Carlisle & Clements, 2003;

Hogsden & Harding, 2012). While the biological conse-

quences of climate-driven acidification events are well

studied (Arnott et al., 2001; Durance & Ormerod, 2007;

Kowalik et al., 2007), the effects of this reduced tOM

export coupled with increased contaminant release

have largely been overlooked. With aerial transport of

metal contaminants over hundreds or thousands of

kilometres, this is not a local issue confined to indus-

trial landscapes (Ouellet & Jones, 1983; Bollh€ofer & Ros-

man, 2001; Marx & McGowan, 2011; Csavina et al.,

2012). Elevated metal concentrations have been

observed in streams hundreds of kilometres from emis-

sion sources (Adkinson et al., 2008). Thus, there is a

clear need to better understand the biological conse-

quences of disruptions to the supply of protective tOM

and contaminant retention by organic soils under war-

mer and drier conditions.

Biological communities at the confluence of lakes and

their receiving waters are especially sensitive to

changes in surrounding catchments. Much of the tOM

exported from terrestrial soils is deposited nearshore,

and nutrients and contaminants released from

catchments are concentrated in littoral areas before

dilution into the pelagic zone (Wetzel, 1992). As littoral

communities account for approximately 50% of

lake productivity and as much as 65% of pelagic fish

diet (Vadeboncoeur et al., 2002; Vander Zanden &

Vadeboncoeur, 2002), changes to terrestrial–aquatic
linkages in nearshore sites can severely impact entire

food webs.

Here, we test whether mild summer droughts are

sufficiently strong to disrupt terrestrial–aquatic link-

ages and reduce littoral abundances of the amphipod

Hyalella azteca, a widespread indicator of ecosystem

condition and food web production (Barton & Hynes,

1976; France, 1993a). We focus on two of the beneficial

terrestrial–aquatic linkages that may be disrupted by

drought: (i) the provision of tOM, either as a resource

subsidy or suppressor of labile metals, and (ii) the

retention of metal contaminants in organic soils. We

expect that concentrations of tOM in outflow from

organic soils of forests and wetlands will decline dur-

ing mild drought (linkage 1). However, we expect that

its mitigating effect on contaminant lability will be out-

weighed by increased labile metal concentrations (Cu

and/or Ni) in littoral zones from organic soil-derived

releases (linkage 2), thereby reducing littoral H. azteca

abundances. We now show that abundance of this indi-

cator species within northern lakes is linked to the

inputs of tOM and labile metals from organic soils in

catchments and how these linkages are disrupted by

drought.

Materials and methods

Study sites and drought conditions

We studied 11 small (0.16–1.75 km2), low nutrient (4–
28 lg L�1 total P), circumneutral (pH 6.5–7.5) lakes that have

been part of H. azteca recolonization surveys in the region of

Sudbury, Canada, since the early 1990s (Table S1). This area is

ideal to test our hypotheses because heterogeneity in smelter-

related metal contamination and recovery from past distur-

bance has left gradients in metal concentrations, vegetation

and soil development among lake catchments (McCall et al.,

1995; Szkokan-Emilson et al., 2011; Meadows & Watmough,

2012). The Canadian National Agroclimate Information Ser-

vice (Agriculture and Agri-Food Canada, 2016) noted below

normal precipitation in the Sudbury area during the summers

of both 2011 and 2012 (Fig. S1). The National Oceanic and

Atmospheric Administration (2015), which synthesizes several

drought indices to estimate the degree of drought across

North America, defined August of 2011 and 2012 as abnor-

mally dry to moderate drought in the Sudbury area. We there-

fore refer to this as ‘mild drought’ conditions.

We selected three well-defined subcatchments in each lake

catchment based on the availability of data from past H. azteca

surveys, or in unstudied lakes based on the highest range in

forest density and organic soil/wetland cover. Subcatchments

were defined as area of land drained by a single discharge

stream, and littoral sites were defined as nearshore areas in

the lakes downstream of subcatchment discharge streams. We

sampled five additional sites below subcatchments in two of

the 11 study lakes for a total of 43 littoral sites.

Sample collection

We collected two water samples from just below the surface

at each littoral site at the start and end of the sampling period

in August 2012. Samples were filtered with 0.2-lm Isopore

membrane filters. We estimated dissolved organic carbon

(DOC) in the samples from known absorbance relationships

as a measure of the concentration of tOM. UV absorbance

was measured at 320 nm for each sample with an Agilent

Cary 60 UV–Vis Spectrophotometer and converted to an

absorbance coefficient (K320) on the basis of the Beer–Lambert

law. We then used K320 to estimate DOC concentration using

a regression model derived for 58 lakes in our study region

that explained 94% of the variation in DOC (Beauclerc &

Gunn, 2001).

We focussed on two representative metal contaminants: Cu,

whose speciation is controlled largely by organometal com-

plexation, and Ni, regulated primarily by pH (Watmough &

Orlovskaya, 2015). We installed diffuse gradients in thin films

(DGTs; Davison & Zhang, 1994) in all sites for 2 weeks to esti-

mate DGT-labile fractions of these contaminants, which are

free ions and those forms that quickly dissociate from organic

molecules. These labile fractions have been related to stress

and toxicity in aquatic organisms, and DGTs are often used as

in situ estimates of metal bioavailability (Røyset et al., 2005;

Martin & Goldblatt, 2007). After collection, DGTs were eluted

and acidified with 70% trace grade HNO3 following standard
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procedures (Garmo et al., 2003). Labile Cu and Ni concentra-

tions from DGTs (NiL and CuL) were analysed using an Agi-

lent 810 ICP-MS. DGT-accumulated metals were converted to

concentrations using formulae and elution efficiencies

described by Garmo et al. (2003) and diffusion coefficients

provided by the manufacturer (DGT Research Ltd., Lan-

cashire, UK). We subtracted the mean concentration of two

laboratory blanks from all DGTs.

We measured H. azteca abundances at each littoral site with

eight modified Hester-Dendy artificial substrates (hereafter,

dendies; North Temperate Lakes LTER, 2005) spaced 1 m

apart following transects at 0.25–0.75 m depth up to a maxi-

mum of 5 m from shore. Dendies were deployed 1 week prior

to DGTs to minimize disturbance and left for 25 days, then

sieved to retain all animals >500 lm and preserved in 70%

ethanol. Hyalella azteca were identified and counted under a

dissecting microscope. All samples were collected during

August of 2012.

Disruption to terrestrial–aquatic linkages

We tested whether terrestrial–aquatic linkages were disrupted

during drought by comparing labile metal and DOC concen-

trations in stream water before (spring) and during dry condi-

tions (summer and into the early fall). We expected that the

disruption would depend on the prevalence of organic soils in

the subcatchment area, so we measured DOC and total metal

concentrations in stream water collected every 8 h from repre-

sentative subcatchments above two of our littoral sites. One of

the sites had high wetland (organic soil) influence (21% wet-

land cover) and one had low wetland influence (1.4% wetland

cover), representing the range in wetland cover across the 43

littoral sites (from aerial photograph interpretation: 0% to 21%

wetland cover, mean = 5.1%). We then used the biotic ligand

model (BLM) to estimate labile (free ion) metal concentrations

in stream water from both subcatchments. The BLM is an

equilibrium model that estimates metal speciation based on

the free ion activity model and the Windermere Humic Aqu-

eous Model (BLM version 2.2.3; Paquin et al., 2000). Default val-

ues of 0.01 lM for stream water sulphide and 10% for humic

acid composition were used for all simulations (Di Toro et al.,

2001). Samples from the two representative sites were col-

lected during a mild summer drought in 2011, but comparable

dry conditions and water table declines were observed in 2012

throughout the study area during the H. azteca sampling per-

iod (Szkokan-Emilson et al., 2014; Fig. S1).

Modelling consequences of disrupted terrestrial–aquatic
linkages in littoral sites

We used the data from our 43 littoral sites to test whether

abundances of the indicator species H. azteca were positively

affected by the provision of tOM (DOC) more strongly than

they were negatively affected by contaminants released from

organic soils during drought conditions. Our approach used

path analysis to describe a hypothesized network of causal

connections from subcatchment characteristics to nearshore

water chemistry and then to H. azteca abundances. Path

analysis is analogous to multiple regression and aims to esti-

mate the direction and magnitude of dependencies among a

set of connected variables (Legendre & Legendre, 2012).

First, we tested how the provision of tOM by organic soils

(linkage 1) varied with wetland area and forest density during

the summer drought. The total wetland influence in each sub-

catchment WLT was estimated with the Tasseled Cap Trans-

formation Wetness Index derived from 11 composite Landsat

5 images taken between 27 March and 5 October 2011 (Crist &

Cicone, 1984). This index estimates the average wetness or sat-

uration in pixels across seasons within the subcatchment.

Total forest density NDVIT was estimated over the subcatch-

ment by averaging Normalized Difference Vegetation Index

(NDVI) values from Landsat 5 images. NDVI estimates vege-

tation density and biomass based on the absorbance of chloro-

phyll activity in plants (Pettorelli et al., 2005). We also

estimated riparian forest density NDVIR by summing NDVI

restricted to the area of the subcatchment up to a maximum

100 m from the point of stream discharge into the lake site.

Summing accounted for differences in contributing riparian

areas across subcatchments and values were not correlated

with NDVIT (Pearson r = 0.23, P = 0.137). We then modelled

DOC in each littoral site i and lake j as a lognormally dis-

tributed variable with a mean a(1) across lakes that varied with

NDVIR, NDVIT, and WLT, and unobserved error v
ð1Þ
j at the

lake level:

DOCij � lnNðlij; rDOCÞ ð1Þ

lij ¼ að1Þ þ b1NDVIRij þ b2NDVITij þ b3WLTij þ vð1Þj :

Second, we tested for evidence of a disruption to the reten-

tion of contaminants in organic soils (linkage 2) by determin-

ing whether labile metals (NiL and CuL) increased

downstream of subcatchments with large wetlands and

decreased as more tOM (DOC) was released. Wetlands that

were directly connected to littoral sites by an outflow stream

were identified from high-resolution photographs. We used a

Compound Topographic Wetness Index overlay to confirm

interpretations and identify additional cryptic wetlands

(Creed et al., 2003) and then distance-weighted the connected

wetland areas by stream length to account for in-stream run-

off dilution and biogeochemical processes. Metals are more

soluble in acidic conditions and so we also accounted for vari-

ation among sites in pH. We then modelled NiL in each littoral

site i and lake j as a lognormally distributed variable with

mean a(2) that varied with pH, DOC, the area of wetland influ-

ence (WLC) and unobserved error v
ð2Þ
j at the lake level:

NiLij � lnNðlij; rNiL Þ ð2Þ

lij ¼ að2Þ þ b4pHij þ b5DOCij þ b6WLCij þ v
ð2Þ
j :

We fitted the same model as above for CuL, with mean a(3)

and unobserved error vð3Þj .

Finally, we tested how abundances (Abundijk) of H. azteca

in each dendy k at littoral site i and lake j varied both with

tOM (DOC) as a bottom-up resource subsidy and with labile

metals (CuL and NiL), which may have been suppressed by

tOM. We also accounted for known variation in H. azteca
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abundances simply because of the depth of dendy deploy-

ment (Lindeman & Momot, 1983). We also included site pH

because of its potential effects on abundance (Snucins, 2003).

We specifically modelled Abundijk as a Poisson lognormal

variable with error term ɛijk accounting for overdispersion

(Elston et al., 2001), mean a(4) across lakes that varied with

NiL, CuL, DOC, Depth, pH and unobserved random variation

vi and v
ð4Þ
j at the site and lake level, respectively:

Abundijk �PoisðkijkÞ ð3Þ

kijk ¼ expðað4Þ þ b10NiLij þ b11CuLij þ b12DOCij þ b13Depthij

þ b14pHij þ v
ð4Þ
j þ vi þ eijkÞ

Model estimation

Statistical models were fitted in a Bayesian framework with

Markov chain Monte Carlo (MCMC) sampling using RSTAN

v.2.9.0 (Stan Development Team, 2016) in R v.3.2.2 (R Core

Team, 2015). Four MCMC chains of 3500 iterations were simu-

lated for each model, with a burn-in of 1000 runs. We assigned

uninformative priors of distribution N(0, 10) for coefficients a
and b and U(0, 10) for r’s. Random variation at the site and

lake level was also drawn from zero-mean normal distribu-

tions but with separately estimated SDs. Model convergence

and mixing of MCMC chains was verified visually with trace

plots and through two diagnostic measures. Firstly, we calcu-

lated the potential scale reduction factor R̂, which predicts the

extent to which a parameter’s credible intervals (CIs) will be

reduced if models are run for an infinite number of simula-

tions (Gelman & Hill, 2007). Secondly, we calculated the effec-

tive sample sizes neff, as a measure of independence among

simulations (Gelman & Hill, 2007). For all models, R̂ values

were <1.1 and neff, values were over 700 indicating MCMC

mixing and model convergence (Gelman & Hill, 2007).

To infer effects, we calculated posterior means and 95% CIs

for each parameter by drawing a subset of 1000 simulations

from the four chains. Tested linkages in our path analysis

were considered supported if 95% CIs around estimated effect

sizes (b’s) excluded zero. As our interest was in within-lake

processes, we summarized model fit with a R2 that calculated

the proportional change in observation-level (or within-lake)

residual variance between full and null (intercept) models

(Nakagawa & Schielzeth, 2013), but conditional R2’s were also

calculated. Residual variance for the Poisson lognormal model

was calculated as the sum of distribution-specific variance

and overdispersion variance (Nakagawa & Schielzeth, 2010).

Results

Drought disrupts terrestrial–aquatic linkages

We found that the provision of tOM from organic soils

(terrestrial–aquatic linkage 1) was disrupted during

mild summer drought within the high coverage but not

the low coverage wetland subcatchment. Following a

brief increase at the onset of the drought, DOC

concentrations decreased significantly from the sub-

catchment with high wetland influence [before: mean

(SD) = 16.1 (3.1) mg L�1, after: mean (SD) = 9.5 (6.1)

mg L�1, t-test: t113 = �7.94, P < 0.001], suggesting that

the oxidation/acidification of organic soils reduced

organic carbon solubility. This is in contrast to a slight

increase at the subcatchment with low wetland influ-

ence, as would be expected where oxidation of organic

soils is not a dominant process, because of increased

decomposition (and DOC formation) in warm summer

conditions [mean (SD): before = 2.66 (0.45) mg L�1,

after = 3.27 (0.64) mg L�1, t95 = 3.64, P < 0.001].

Despite the decrease in DOC at the high wetland site,

average concentrations remained nearly four times

higher than the site with low wetland influence, indi-

cating some maintenance of tOM provision despite the

disruption of this linkage (Fig. 1a, b).

We also found that the retention of contaminants in

organic soils (terrestrial–aquatic linkage 2) was dis-

rupted during mild summer drought, thereby releasing

labile Ni and Cu. This response was larger in the high

wetland subcatchment, where average labile Ni concen-

trations increased by 36 times [mean (SD): before = 12.9

(13.4) lg L�1, after = 470 (437) lg L�1, t82 = 9.53,

P < 0.001], compared to 2.7 times from the low wet-

land subcatchment [mean (SD): before = 55.2 (18.5)

lg L�1, after = 147 (124) lg L�1, t95 = 2.95, P = 0.004]

(Fig. 1c, d). Similarly, labile Cu concentrations

increased 26 times in outflow from the high wetland

subcatchment [mean (SD): before = 0.75 (1.11) lg L�1,

after = 19.6 (17.1) lg L�1, t74 = 9.43, P < 0.001], but did

not change beneath the low wetland site [mean (SD):

before = 9.85 (5.01) lg L�1, after = 11.6 (10.7) lg L�1,

t95 = 0.65, P = 0.515] (Fig. 1e, f).

Consequences of disrupted terrestrial–aquatic linkages in
littoral sites

Patterns of DOC in downstream littoral sites further

supported our prediction that drought would disrupt

terrestrial–aquatic linkage 1. DOC concentrations were

relatively low during the drought, ranging from 1.24 to

6.22 mg L�1 across the 43 littoral sites (Table 1), and

increased with subcatchment wetland area (Table 2,

Fig. 2a), consistent with our observations in stream out-

flows (Fig. 1a, b). We also found that DOC concentra-

tion increased in littoral sites with riparian forest area

(Table 2, Fig. 2b).

Labile metals in the littoral sites also supported our

prediction of a disruption to linkage 2 during drought

that released contaminants from soils (Fig. 3). Labile Ni

ranged from 8.38 to 47.9 lg L�1 across the littoral sites

(Table 1) and increased with connected wetland area

(Table 2, Fig. 2c). This was consistent with the BLM
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results predicting some labile Ni release during

drought even from the subcatchment with low wetland

influence, and higher release from the subcatchment

with high wetland influence (Fig. 1c, d). In contrast to

Ni, labile Cu concentrations were lower, ranging from

0.37 to 3.06 lg L�1 across the littoral sites (Table 1),

and did not increase with weighted wetland area

(Table 2). This was again consistent with the BLM

results that showed no detectable increase in release

from the subcatchment with the smaller wetland

(a)

(c) (d)

(f)(e)

(b)

Fig. 1 Drought reduces dissolved organic carbon (DOC) export but elevates metal release in catchments with high wetland influence.

DOC concentrations increase minimally from the low wetland (1% wetland cover) catchment (a) but decrease from the high wetland

(21% wetland cover) catchment (b). Labile metal concentrations (NiL, CuL) show minimal change from the low wetland catchment (c, e)

vs. large increases from the high wetland catchment (d, f). Open circles in panel (b) indicate an increase in DOC observed during the

onset of drought.

Table 1 Mean (SD) of labile metal (CuL, NiL) and DOC concentrations in all littoral sites, and compared among sites without Hya-

lella azteca (average dendy abundance below 1 animal), those with some present (from 1 to 31 animals) and those with high abun-

dance (at least 32 animals, i.e. above the 85th percentile of abundance)

Overall Range

H. azteca abundance group

Absent Present Abundant

CuL (lg L�1) 1.32 (0.52) 0.37–3.06 1.19 (0.44) 1.58 (0.64) 1.25 (0.32)

NiL (lg L�1) 22.8 (8.32) 8.38–47.9 26.0 (8.78) 20.7 (4.08) 16.5 (8.79)*

DOC (mg L�1) 3.12 (1.31) 1.24–6.22 3.02 (1.21) 3.03 (1.25) 3.62 (1.77)

pH 6.27 (0.81) 3.86–7.94 6.06 (0.52) 6.48 (1.22) 6.53 (0.14)

Sites (N) 43 43 22 14 7

*Significant difference from sites without H. azteca t95 = �2.85, P = 0.007.
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Table 2 Estimated effects for terrestrial–aquatic linkage models

Response

Mean parameter estimates (95% CI)
Within-lake

(conditional) R2Significant effects Nonsignificant effects

DOC1 Riparian forest density 0.066 (0.006–0.126) Total forest density �0.002 (�0.083 to 0.078) 0.29 (0.87)

Total wetland 0.067 (0.003–0.134)

Labile Ni2 Connected wetland 0.082 (0.006–0.163) DOC �0.098 (�0.298 to 0.111) 0.31 (0.78)

pH �0.044 (�0.160 to 0.067)

Labile Cu3 DOC �0.205 (�0.397 to �0.023) pH 0.054 (�0.114 to 0.199) 0.25 (0.43)

Connected wetland �0.003 (�0.144 to 0.130)

Abundance4 Labile Ni �0.914 (�1.879 to �0.041) Labile Cu 0.629 (�0.086 to 1.371) 0.94 (0.91)

Depth �1.227 (�1.915 to �0.575) DOC 0.016 (�1.064 to 1.087)

pH �0.149 (�0.908 to 0.651)

Model fit is shown as a within-lake R2 calculated at the observation level along with conditional R2 in brackets (see text for details

of calculation). Significant effects (not overlapping zero) are bolded.

See supplementary table 1S2a, 2S2b, 3S2c and 4S2d for full model details.

Fig. 2 Disrupted terrestrial–aquatic linkages during mild drought conditions. Terrestrial organic matter (tOM) concentration dissolved

organic carbon (DOC) increases with total wetland (a) and riparian forest density (b) and in turn suppresses labile Cu concentration

(d). Labile Ni increases with connected wetland area (c), which in turn suppresses Hyalella azteca abundances (e). Lines indicate mean

model fit �95% CI (grey polygons). Points are (a–d) site- or (e) dendy-level partial residuals. Model statistics are reported in Table 1.

© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., doi: 10.1111/gcb.13361
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(Fig. 1e, f). Partly, tOM continued to suppress Cu, as

labile concentrations were negatively associated with

DOC (Table 2, Fig. 2d). There was no detectable effect

of pH on labile Ni or Cu concentrations in the littoral

sites (Table 2).

Given disruption to both terrestrial–aquatic linkages

during the drought, we found that H. azteca abun-

dances were substantially reduced, as there was a nega-

tive association between abundance and labile Ni that

was mediated through these linkages (Fig. 3). For

example, a 2 SD increase in wetland influence above

average conditions reduced H. azteca abundances by

49% through the soil Ni linkage (disrupted linkage 2;

Fig. 3). Despite evidence of reductions in DOC from

large wetlands during drought (disrupted linkage 1;

Fig. 1b), the provision of tOM from wetland and ripar-

ian forest soils remained sufficient to reduce labile frac-

tions of Cu, which has a higher affinity for DOC, to

levels that did not influence H. azteca abundances

(Table 2, Fig. 2a, b, d). The lack of a direct effect of

DOC on H. azteca also suggested that tOM was not act-

ing as a bottom-up resource subsidy during the sum-

mer drought (Table 2). Aside from these linkages, we

also found fewer animals in deeper waters (Table 2).

Discussion

Here, we have found strong evidence, and the first to

our knowledge, that important linkages between lake

biota and terrestrial organic soils can be disrupted even

during mild summer droughts. These findings have the

potential to transform the way we view terrestrial–
aquatic linkages by revealing a striking duality in the

function of organic soils during dry conditions. We

specifically found that organic soils can buffer the

effects of hydrologic disconnection between catchments

and lakes, but at the cost of biogeochemical changes

that release stored metal contaminants that harm biota

in receiving waters. This extends previous work, which

has shown drought impairs aquatic invertebrate colo-

nization by inducing acidification events (Arnott et al.,

2001; Durance & Ormerod, 2007; Kowalik et al., 2007).

In littoral zones, the mixing of stream outflow and lake

water with higher buffering capacity can regulate these

pH impacts; however, released metal contaminants

may also create lingering effects that extend beyond

dry conditions because they can precipitate and accu-

mulate with deposited littoral sediments (McKnight &

Bencala, 1990; Roulier et al., 2008). Our results therefore

suggest that more frequent and intense dry conditions

brought on by climate change will disrupt terrestrial–
aquatic linkages and potentially damage lake food

webs.

Disruption to terrestrial–aquatic linkages

We found evidence that the provision of tOM from

organic soils (terrestrial–aquatic linkage 1) was dis-

rupted by drought. Concentrations of DOC in streams

draining wetlands were reduced during drought,

which is counter to what is expected in warm summer

conditions when decomposition and DOC production

from organic soils should be highest (Freeman et al.,

2001; Evans et al., 2006), and dilution of DOC by over-

land flows should be lowest (Eimers et al., 2008;

Sowerby et al., 2010). However, similar reductions in

DOC concentration in response to drought have been

observed elsewhere (Clark et al., 2005, 2011) and have

been attributed to either decreased solubility brought

on by increased acidity and ionic strength or perhaps

enhanced oxidative decomposition to CO2 (Pastor et al.,

2003; Clark et al., 2005, 2011). Regardless of the cause of

the decline, the results supported our hypothesis that

there is some continued provision of tOM through the

Fig. 3 Path analysis of linkages between terrestrial organic soils

and aquatic biota (Hyalella azteca abundances), as disrupted by

drought. Model effect sizes are shown for the two linkages: (L1) the

provision of terrestrial organicmatter (tOM;measured asDOC) as a

regulator of contaminant lability, and (L2) the supply of labile metal

contaminants from organic soils. Wetland area is either total wet-

land influence (in L1 models) or connected wetland area (in L2

models). Parameters with no significant relationships are greyed.

Model statistics and parameters are reported in Table 1.
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drought, as DOC concentrations in littoral sites

remained correlated with wetland and riparian forest

areas and lent to the suppression of labile Cu

concentrations.

We also found evidence that the retention of contami-

nants by organic soils (terrestrial–aquatic linkage 2)

was disrupted by drought causing wetlands to become

a source of metals to littoral sites. This reveals a duality

of organic soil function during dry conditions, whereby

there is a benefit of tOM provision but at the cost of an

added contaminant release. Previous studies have

demonstrated similar drying and oxidation-related

increases in metal concentrations from organic wetland

soils (Tipping et al., 2003; Juckers & Watmough, 2014),

with concentrations exceeding water quality guidelines

by orders of magnitude in catchments where large

stores of metal contaminants have accumulated (Szko-

kan-Emilson et al., 2013). Although our sites are in an

area with relatively high smelter-related Cu and Ni

concentrations, similar metal releases have been

observed at sites almost 300 km from contaminant

sources (Adkinson et al., 2008). We show here that the

geochemical effects of these dry conditions extend out

into littoral zones with the potential to damage aquatic

biota in receiving waters.

Terrestrial organic matter can provide a direct food

source for some consumers (Cole et al., 2006; Bartels

et al., 2012) or subsidize microbial communities that

then feed higher trophic levels (Jansson et al., 2007;

Tanentzap et al., 2014), but we found no effect of tOM

on abundances on H. azteca. Although there was evi-

dence that the supply of tOM was reduced, concentra-

tions were still within a range observed to promote

heterotrophic bacterial biomass (Tanentzap et al., 2014).

As we hypothesized, the toxicity resulting from dis-

rupted linkages may have outweighed the potential

tOM subsidy effect because both tOM and labile metal

concentrations were concurrently highest in littoral

sites downstream of large wetlands. However,

increased inputs of highly recalcitrant tOM can also

reduce productivity in lakes by altering physical (e.g.

light and temperature) and chemical (e.g. nutrient and

oxygen) conditions (Stasko et al., 2012; Kelly et al., 2014;

Karlsson et al., 2015). DOC concentrations in our study

were within a range observed to shade out and reduce

primary productivity (Thrane et al., 2014), so it is possi-

ble that tOM elicited both positive and negative effects

and we could only detect the net outcome in our

models.

Potential effects on aquatic food webs

Our results suggest that aquatic food webs may suffer

from disruption to terrestrial–aquatic linkages during

summer droughts. We found that the abundance of

H. azteca decreased with labile Ni concentrations in lit-

toral sites, which were within ranges that are chroni-

cally toxic. Schroeder et al. (2010) found 28 day toxicity

of free ion Ni (LC50s) to H. azteca to average

44.6 lg L�1 and as low as 17.6 lg L�1. Our sites had

labile concentrations in this range, from 12.5 to

46.2 lg L�1, with conditions persisting longer than

28 days, even though the source of the pollutants has

been greatly reduced for over 30 years (Szkokan-Emil-

son et al., 2013). These reductions in abundance are

notable because H. azteca can account for as much as

65% of fish diet (Jansen & Mackay, 1992; Vander Zan-

den & Vadeboncoeur, 2002). Hyalella azteca is also one

of the most ubiquitous benthic invertebrates in fresh-

water systems (Lindeman & Momot, 1983; France,

1993b), making any reduction in their abundances

likely to influence entire food webs.

Although we chose Ni and Cu as representative con-

taminants, the toxic effect of these disrupted linkages

would actually be the product of many interactive and

correlated contaminants. For example, Watmough &

Orlovskaya (2015) found Co, Mn and Zn to be released

along with Ni from peatland soils in response to dry-

ing, and all of these metals are chronically toxic to

H. azteca and other aquatic organisms (Borgmann et al.,

2005; Norwood et al., 2007). Although the lability of Cu

remained low because of its high affinity with DOC

and organic soils (Santore et al., 2001; Novak et al.,

2011), there are several other metals that are regulated

by organic matter to varying degrees and some are

toxic at low concentrations [e.g. Pb and Cd; Borgmann

et al. (2005)]. Furthermore, other keystone invertebrates

such as Hexagenia spp. and Ceratodaphnia pulex are

equally or more sensitive to certain metals than

H. azteca (Milani et al., 2003; Keithly et al., 2004), so the

potential for impacts to aquatic communities is great.

As evidence of the toxicity of even trace concentrations

(Carlisle & Clements, 2003; Hogsden & Harding, 2012)

and the extent of global dispersion of metals grows

(Steinnes & Friedland, 2006; Marx & McGowan, 2011;

Csavina et al., 2012), it is increasingly important that

we better understand the biogeochemical links among

forests, organic soils and aquatic ecosystems in a chang-

ing climate.
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