15 research outputs found

    Cognition, emotional state, and quality of life of survivors after cardiac arrest with rhythmic and periodic EEG patterns

    Get PDF
    Aim: Rhythmic and periodic patterns (RPPs) on the electroencephalogram (EEG) in comatose patients after cardiac arrest have been associated with high case fatality rates. A good neurological outcome according to the Cerebral Performance Categories (CPC) has been reported in up to 10% of cases. Data on cognitive, emotional, and quality of life outcomes are lacking. We aimed to provide insight into these outcomes at one-year follow-up. Methods: We assessed outcome of surviving comatose patients after cardiac arrest with RPPs included in the ‘treatment of electroencephalographic status epilepticus after cardiopulmonary resuscitation’ (TELSTAR) trial at one-year follow-up, including the CPC for functional neurological outcome, a cognitive assessment, the hospital anxiety and depression scale (HADS) for emotional outcomes, and the 36-item short-form health survey (SF-36) for quality of life. Cognitive impairment was defined as a score of more than 1.5 SD below the mean on = 2 (sub)tests within a cognitive domain. Results: Fourteen patients were included (median age 58 years, 21% female), of whom 13 had a cognitive impairment. Eleven of 14 were impaired in memory, 9/14 in executive functioning, and 7/14 in attention. The median scores on the HADS and SF-36 were all worse than expected. Based on the CPC alone, 8/14 had a good outcome (CPC 1–2). Conclusion: Nearly all cardiac arrest survivors with RPPs during the comatose state have cognitive impairments at one-year follow-up. The incidence of anxiety and depression symptoms seem relatively high and quality of life relatively poor, despite ‘good’ outcomes according to the CPC

    PURA-Related Developmental and Epileptic Encephalopathy Phenotypic and Genotypic Spectrum

    Get PDF
    Background and Objectives Purine-rich element-binding protein A (PURA) gene encodes Pur-α, a conserved protein essential for normal postnatal brain development. Recently, a PURA syndrome characterized by intellectual disability, hypotonia, epilepsy, and dysmorphic features was suggested. The aim of this study was to define and expand the phenotypic spectrum of PURA syndrome by collecting data, including EEG, from a large cohort of affected patients. Methods Data on unpublished and published cases were collected through the PURA Syndrome Foundation and the literature. Data on clinical, genetic, neuroimaging, and neurophysiologic features were obtained. Results A cohort of 142 patients was included. Characteristics of the PURA syndrome included neonatal hypotonia, feeding difficulties, and respiratory distress. Sixty percent of the patients developed epilepsy with myoclonic, generalized tonic-clonic, focal seizures, and/or epileptic spasms. EEG showed generalized, multifocal, or focal epileptic abnormalities. Lennox-Gastaut was the most common epilepsy syndrome. Drug refractoriness was common: 33.3% achieved seizure freedom. We found 97 pathogenic variants in PURA without any clear genotype-phenotype associations. Discussion The PURA syndrome presents with a developmental and epileptic encephalopathy with characteristics recognizable from neonatal age, which should prompt genetic screening. Sixty percent have drug-resistant epilepsy with focal or generalized seizures. We collected more than 90 pathogenic variants without observing overt genotype-phenotype associations

    PURA syndrome : clinical delineation and genotype-phenotype study in 32 individuals with review of published literature

    Get PDF
    Background De novo mutations in PURA have recently been described to cause PURA syndrome, a neurodevelopmental disorder characterised by severe intellectual disability (ID), epilepsy, feeding difficulties and neonatal hypotonia. Objectives T o delineate the clinical spectrum of PURA syndrome and study genotype-phenotype correlations. Methods Diagnostic or research-based exome or Sanger sequencing was performed in individuals with ID. We systematically collected clinical and mutation data on newly ascertained PURA syndrome individuals, evaluated data of previously reported individuals and performed a computational analysis of photographs. We classified mutations based on predicted effect using 3D in silico models of crystal structures of Drosophila-derived Pur-alpha homologues. Finally, we explored genotypephenotype correlations by analysis of both recurrent mutations as well as mutation classes. Results We report mutations in PURA (purine-rich element binding protein A) in 32 individuals, the largest cohort described so far. Evaluation of clinical data, including 22 previously published cases, revealed that all have moderate to severe ID and neonatal-onset symptoms, including hypotonia (96%), respiratory problems (57%), feeding difficulties (77%), exaggerated startle response (44%), hypersomnolence (66%) and hypothermia (35%). Epilepsy (54%) and gastrointestinal (69%), ophthalmological (51%) and endocrine problems (42%) were observed frequently. Computational analysis of facial photographs showed subtle facial dysmorphism. No strong genotype-phenotype correlation was identified by subgrouping mutations into functional classes. Conclusion We delineate the clinical spectrum of PURA syndrome with the identification of 32 additional individuals. The identification of one individual through targeted Sanger sequencing points towards the clinical recognisability of the syndrome. Genotype-phenotype analysis showed no significant correlation between mutation classes and disease severity.Peer reviewe

    Deep brain stimulation of the anterior nucleus of the thalamus in drug-resistant epilepsy in the MORE multicenter patient registry

    Get PDF
    Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (CC BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background and objectives: The efficacy of deep brain stimulation of the anterior nucleus of the thalamus (ANT DBS) in patients with drug-resistant epilepsy (DRE) was demonstrated in the double-blind Stimulation of the Anterior Nucleus of the Thalamus for Epilepsy randomized controlled trial. The Medtronic Registry for Epilepsy (MORE) aims to understand the safety and longer-term effectiveness of ANT DBS therapy in routine clinical practice. Methods: MORE is an observational registry collecting prospective and retrospective clinical data. Participants were at least 18 years old, with focal DRE recruited across 25 centers from 13 countries. They were followed for at least 2 years in terms of seizure frequency (SF), responder rate (RR), health-related quality of life (Quality of Life in Epilepsy Inventory 31), depression, and safety outcomes. Results: Of the 191 patients recruited, 170 (mean [SD] age of 35.6 [10.7] years, 43% female) were implanted with DBS therapy and met all eligibility criteria. At baseline, 38% of patients reported cognitive impairment. The median monthly SF decreased by 33.1% from 15.8 at baseline to 8.8 at 2 years (p 10 implantations) had 42.8% reduction in median monthly SF by 2 years in comparison with 25.8% in low-volume center. In patients with cognitive impairment, the reduction in median monthly SF was 26.0% by 2 years compared with 36.1% in patients without cognitive impairment. The most frequently reported adverse events were changes (e.g., increased frequency/severity) in seizure (16%), memory impairment (patient-reported complaint, 15%), depressive mood (patient-reported complaint, 13%), and epilepsy (12%). One definite sudden unexpected death in epilepsy case was reported. Discussion: The MORE registry supports the effectiveness and safety of ANT DBS therapy in a real-world setting in the 2 years following implantation. Classification of evidence: This study provides Class IV evidence that ANT DBS reduces the frequency of seizures in patients with drug-resistant focal epilepsy.The MORE registry was sponsored and funded by Medtronic, plc.info:eu-repo/semantics/publishedVersio

    Haptoglobin polymorphism and lacunar stroke

    No full text
    Haptoglobin (Hp) 2-2 phenotype has been associated with peripheral and coronary artery disease and risk of vascular complications in diabetic patients, but any association of Hp polymorphism with cerebrovascular disease has not been explored so far. We aimed to study Hp polymorphism in a sample of 124 patients with a rather homogeneous type of cerebrovascular disease, namely first symptomatic lacunar stroke due to small vessel disease, in comparison with a large (n=918) control group. Hp phenotypes were determined using starch gel electrophoresis. Hp1 allele frequency was significantly higher in patients than in controls (0.480 vs. 0.395, p < 0.05), mainly due to a lower Hp2-2 phenotype frequency (25.0 vs. 36.3 %; OR 0.59; 95% CI 0.38-0.90; p < 0.05). This was even more pronounced in younger (60 years) patients (Hp1 allele frequency 0.539). Concomitant asymptomatic lacunar lesions were present in 82 patients, extensive white matter lesions in 47 patients. The association between Hp1 and lacunar stroke suggests that Hp may serve different functions depending on the pathological processes in various types of vascular disease in different organs. The association between Hp1 and lacunar stroke may relate to blood-brain barrier dysfunction, to the association between hypertension and cerebral small vessel disease, or a special dependence of small vessel wall integrity on Hp2-2 related angiogenic potential. The presence of concomitant signs of cerebral small vessel disease weakened the association between Hp1 and lacunar stroke, which could reflect a difference in underlying vascular pathophysiology in which Hp phenotype may play a different role

    Structural covariance networks relate to the severity of epilepsy with focal-onset seizures

    Get PDF
    Purpose: The brains of patients with epilepsy may exhibit various morphological abnormalities, which are often not directly visible on structural MR images, as they may be focally subtle or related to a more large-scale inconspicuous disorganization of brain structures. To explore the relation between structural brain organization and epilepsy characteristics, including severity and cognitive co-morbidity, we determined structural covariance networks (SCNs). SCNs represent interregional correlations of morphologic measures, for instance in terms of cortical thickness, between various large-scale distributed brain regions. Methods: Thirty-eight patients with focal seizures of all subtypes and 21 healthy controls underwent structural MRI, neurological, and IQ assessment. Cortical thickness was derived from the structural MRIs using FreeSurfer. Subsequently, SCNs were constructed on a group-level based on correlations of the cortical thicknesses between various brain regions. Individual SCNs for the epilepsy patients were extracted by adding the respective patient to the control group prior to the SCN construction (i.e. add-one-patient approach). Calculated network measures, i.e. path length, clustering coefficient and betweenness centrality were correlated with characteristics related to the severity of epilepsy, including seizure history and age at onset of epilepsy, and cognitive performance. Results: Stronger clustering in the individual SCN was associated with a higher number of focal to bilateral tonic-clonic seizures during life time, a younger age at onset, and lower cognitive performance. The path length of the individual SCN was not related to the severity of epilepsy or cognitive performance. Higher betweenness centrality of the left cuneus and lower betweenness centrality of the right rostral middle frontal gyrus were associated with increased drug load and younger age at onset, respectively. Conclusions: These results indicate that the correlations between interregional variations of cortical thickness reflect disease characteristics or responses to the disease and deficits in patients with epilepsy with focal seizures. Keywords: Magnetic resonance imaging, Cortical thickness, Structural covarience networks, Epilepsy, Seizures, Cognitio

    Towards prognostic biomarkers from BOLD fluctuations to differentiate a first epileptic seizure from new-onset epilepsy

    Get PDF
    Objective: The diagnosis of epilepsy cannot be reliably made prior to a patient's second seizure in most cases. Therefore, adequate diagnostic tools are needed to differentiate subjects with a first seizure from those with a seizure preceding the onset of epilepsy. The objective was to explore spontaneous blood oxygen level–dependent (BOLD) fluctuations in subjects with a first-ever seizure and patients with new-onset epilepsy (NOE), and to find characteristic biomarkers for seizure recurrence after the first seizure. Methods: We examined 17 first-seizure subjects, 19 patients with new-onset epilepsy (NOE), and 18 healthy controls. All subjects underwent clinical investigation and received electroencephalography and resting-state functional magnetic resonance imaging (MRI). The BOLD time series were analyzed in terms of regional homogeneity (ReHo) and fractional amplitude of low-frequency fluctuations (fALFFs). Results: We found significantly stronger amplitudes (higher fALFFs) in patients with NOE relative to first-seizure subjects and healthy controls. The frequency range of 73–198 mHz (slow-3 subband) appeared most useful for discriminating patients with NOE from first-seizure subjects. The ReHo measure did not show any significant differences. Significance: The fALFF appears to be a noninvasive measure that characterizes spontaneous BOLD fluctuations and shows stronger amplitudes in the slow-3 subband of patients with NOE relative first-seizure subjects and healthy controls. A larger study population with follow-up is required to determine whether fALFF holds promise as a potential biomarker for identifying subjects at increased risk to develop epilepsy
    corecore